Latest and representative publications are listed below. A full list of publications can be found at

Latest Publications

Eugene J Tsao, Alexander J Lind, Connor Fredrick, Ryan K Cole, Peter Chang, Kristina F Chang, Dahyeon Lee, Matthew Heyrich, Nazanin Hoghooghi, Franklyn Quinlan, Scott A Diddams, "Dual comb correlation spectroscopy of thermal light," (2024)

William Groman, Igor Kudelin, Alexander Lind, Dahyeon Lee, Takuma Nakamura, Yifan Liu, Megan L Kelleher, Charles A McLemore, Joel Guo, Lue Wu, Warren Jin, John E Bowers, Franklyn Quinlan, Scott A Diddams, "Photonic Millimeter-wave Generation Beyond the Cavity Thermal Limit,"(2024)

Igor Kudelin, Pedram Shirmohammadi, William Groman, Samin Hanifi, Megan L Kelleher, Dahyeon Lee, Takuma Nakamura, Charles A McLemore, Alexander Lind, Dylan Meyer, Junwu Bai, Joe C Campbell, Steven M Bowers, Franklyn Quinlan, Scott A Diddams, "Tunable X-band opto-electronic synthesizer with ultralow phase noise" (2024)

Noah Lordi, Eugene Tsao, Alex Lind, Scott Diddams, Joshua Combes, "Quantum theory of temporally mismatched homodyne measurements with applications to optical-frequency-comb metrology."Physical Review A109,033722 (2024)

Molly Kate Kreider, Connor Fredrick, Scott A. Diddams, Ryan C. Terrien, Suvrath Mahadevan, Joe P. Ninan, Chad F. Bender, Daniel Mitchell, Jayadev Rajagopal, Arpita Roy, Christian Schwab, Jason T. Wright, "Quantifying broadband chromatic drifts in Fabry-Perot resonators for exoplanet science," (2024)

Kristina F. Chang, Daniel M. B. Lesko, Carter Mashburn, Peter Chang, Eugene Tsao, Alexander J. Lind, and Scott A. Diddams, "Multi-harmonic near-infrared–ultraviolet dual-comb spectrometer," Opt. Lett.49, 1684-1687 (2024)

Igor Kudelin, Will Groman, et al., “Photonic chip-based low noise microwave oscillator” Nature(2024).

Tsung-Han Wu, Luis Ledezma, Connor Fredrick, Pooja Sekhar, Ryoto Sekine, Qiushi Guo, Ryan M. Briggs, Alireza Marandi, Scott A. Diddams, “Visible to Ultraviolet Frequency Comb Generation in Lithium Niobate Nanophotonic Waveguides,” Nat. Photon.(2024). and

Yifan Liu,et al. "Low-noise microwave generation with an air-gap optical reference cavity,"APL Photonics9,010806 (2024).

W. Hettel, et al. "Compact, ultrastable, high repetition-rate 2 μm and 3 μm fiber laser for seeding mid-IR OPCPA," Opt. Express32, 4072-4080 (2024)

G Stefánsson, et al., "A Neptune-mass exoplanet in close orbit around a very low-mass star challenges formation models," Science,382, 1031-1035 (2023)

Ryan K. Cole, Connor Fredrick, Newton H. Nguyen, Scott A. Diddams, “Precision Doppler Shift Measurements with a Frequency Comb Calibrated Laser Heterodyne Radiometer,” Opt. Lett.48, 5185-5188 (2023) 

Nazanin Hoghooghi et al., “Complete reactants-to-products observation of a gas-phase chemical reaction with broad, fast mid-infrared frequency combs,” (2023) 

Pooja Sekhar, Connor Fredrick, David R. Carlson, Zachary Newman, Scott A. Diddams, “20 GHz fiber-integrated femtosecond pulse and supercontinuum generation with a resonant electro-optic frequency comb,” APL Photonics8,116111(2023).

Reviews

Nemanja Jovanovic et al., “2023 Astrophotonics Roadmap: pathways to realizing multi-functional integrated astrophotonic instruments,” J. Phys. Photonics5042501 (2023)

S. Diddams, K. Vahala, and T. Udem, “Optical Frequency Combs: Coherently Uniting the Electromagnetic Spectrum,” Science 369, eaay3676 (2020).

D. A. Fischer, et al. “State of the Field: Extreme Precision Radial Velocities,” Publications of the Astronomical Society of the Pacific, 128, 066001 (2016)

T. J. Kippenberg, R.L. Holzwarth and S.A. Diddams, “Microresonator based optical frequency combs,” Science 332, 555 (2011).

S.A. Diddams, “The evolving optical frequency comb,” JOSA B 27, B51 (2010).

M. C. Stowe, M. J. Thorpe, A. Pe'er, J. Ye, J. Stalnaker, V. Gerginov, and S. Diddams, "Direct frequency comb spectroscopy," in Advances in Atomic, Molecular and Optical Physics, vol. 55, E. Arimondo and P. Berman, eds., (Elsevier, 2007).

S. A. Diddams, J. C. Bergquist, S. R. Jefferts and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science, 306, 1318 (2004).

Frequency Combs

N. Hoghooghi, S. Xing, P. Chang, D. Lesko, A. Lind, G. Rieker, S. Diddams “1-GHz mid-infrared frequency comb spanning 3 to 13 mm,” Light Sci Appl 11, 264 (2022).

D. M. Lesko, H. R. Timmers, S. Xing, A. S. Kowligy, A. J. Lind, and S. A. Diddams, “A 6-octave optical frequency comb from a scalable few-cycle Erbium fiber laser,”Nature Photonics(2021).

S. Xing, D.M.B. Lesko, T. Umeki, A. J. Lind, N. Hoghooghi, T.-H. Wu, S. A. Diddams, “Single-cycle all-fiber frequency comb,” APL Photon. 6, 086110 (2021).

Andrew J. Metcalf, Connor D. Fredrick, Ryan C. Terrien, Scott B. Papp, and Scott A. Diddams, "30  GHz electro-optic frequency comb spanning 300  THz in the near infrared and visible," Opt. Lett.  44, 2673-2676 (2019)

D. R. Carlson, D. Hickstein, W. Zhang, A.J. Metcalf, F. Quinlan, S. Diddams, and S. Papp, “Ultrafast electro-optic light with subcycle control, Science 361, 1358 (2018).

Holly Leopardi, Josue Davila-Rodriguez, Franklyn Quinlan, Judith Olson, Jeff A. Sherman, Scott A. Diddams, and Tara M. Fortier, "Single-branch Er:fiber frequency comb for precision optical metrology with 10−18fractional instability,"Optica4, 879-885 (2017)

F. C. Cruz,D. L. Maser,T. Johnson,G. Ycas,A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,”Opt. Express23, 26815 (2015).

A. Bartels, D. Heinecke, S. A. Diddams, “10 GHz Self-referenced Optical Frequency Comb,” Science 326, 681 (2009).

T. Fortier, A. Bartels, S.A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons,” Opt. Lett. 31, 1011 (2006).

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635 (2000).

S. A. Diddams,D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,”Phys. Rev. Lett. 84, 5102 (2000)..A Phys. Rev. Lett. 50th anniversary milestone letter.

Optical Clocks & Stable Lasers

CA McLemore, et al. “Miniaturizing Ultrastable Electromagnetic Oscillators: Sub 10-14 Frequency Instability from a Centimeter-Scale Fabry-Perot Cavity”, Physical Review Applied 18 (5), 054054 (2022)

K. Beloy, et al., “Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks,” Nature 591, 564 (2021).

Z. L. Newman, et al., "Architecture for the photonic integration of an optical atomic clock," Optica 6, 680-685 (2019).

S.B. Papp, K. Beha, P. Del'Haye, F. Quinlan, H. Lee, K. Vahala, and S.A. Diddams, “A microresonator frequency comb optical clock,” Optica 1, 10 (2014).

T. Rosenband, et al., “Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks: Metrology at the 17th Decimal Place,” Science 319, 1808 (2008)

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825 (2001).

Optical and Microwave Frequency Synthesis

T. Nakamura, et al., “Coherent Optical Clock Down-Conversion for Microwave Frequencies with 10-18 Instability,” Science 368, 889-892 (2020).

D. T. Spencer, et al., “An Integrated-Photonics Optical-Frequency Synthesizer,” Nature 557, 81 (2018).

Katja Beha, Daniel C. Cole, Pascal Del’Haye, Aurélien Coillet, Scott A. Diddams, and Scott B. Papp, "Electronic synthesis of light," Optica 4, 406-411 (2017).

T. M Fortier, et al., “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10, 780–790 (2016)

T. Fortier, M. Kirchner, F. Quinlan, J. Taylor, J.C. Bergquist, Y. Jiang, A. Ludlow, C.W. Oates, T. Rosenband, and S.A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photonics 5, 425 (2011).

A. Bartels, S.A. Diddams, C.W. Oates, G. Wilpers, J. C. Bergquist, W. Oskay, L. Hollberg, “Femtosecond laser based synthesis of ultrastable microwave signals from optical frequency references,”Opt Lett. 30, 667 (2005).

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19level,” Science,303, 1843 (2004).

J. Ye, J.L. Hall, and S.A. Diddams, “Precision phase control of ultrawide-bandwidth femtosecond laser:A network of ultrastable frequency marks across the visible spectrum, Opt. Lett. 25, 1675 (2000).

Frequency Comb Spectroscopy

A. S. Kowligy, H. Timmers, A. J. Lind, U. Elu, F. C. Cruz, P. G. Schunemann, J. Biegert, and S. A. Diddams, “Infrared electric-field sampled frequency comb spectroscopy,” Science Advances 5, eaaw8794 (2019).

Nima Nader, et al., "Infrared frequency comb generation and spectroscopy with suspended silicon nanophotonic waveguides,"Optica6, 1269-1276 (2019).

Henry Timmers, Abijith Kowligy, Alex Lind, Flavio C. Cruz, Nima Nader, Myles Silfies, Gabriel Ycas, Thomas K. Allison, Peter G. Schunemann, Scott B. Papp, and Scott A. Diddams, "Molecular fingerprinting with bright, broadband infrared frequency combs," Optica 5, 727-732 (2018).

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High Coherence Mid-Infrared Dual Comb Spectroscopy Spanning 2.6 to 5.2 microns,”Nature Photonics12, 202–208 (2018).

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams,“Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in87Rubidium,” Phys. Rev. A 80, 053806 (2009).

S. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with spectrally-resolved modes of a femtosecond laser frequency comb,” Nature 445, 627 (2007).

V. Gerginov, C.E. Tanner, S.A. Diddams, A. Bartels, and L. Hollberg, “High resolution spectroscopy with a femtosecond laser frequency comb,” Opt Lett30, 1734 (2005).

Precision Astronomical Spectroscopy

A. J. Metcalf, et al., "Stellar spectroscopy in the near-infrared with a laser frequency comb," Optica 6, 233-239 (2019).

M.-G. Suh, et al., "Searching for Exoplanets Using a Microresonator Astrocomb", Nature Photonics 13, 25–30 (2019).

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann & C. Beichman, "Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy." Nature Communications 7, 10436 (2016)

G.G. Ycas, F. Quinlan, S.A. Diddams, S. Osterman, C. Bender, B. Botzer, L. Ramsey, R. Terrien, S. Mahadevan, and S. Redman, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20, 6631 (2012).

F. Quinlan, G. Ycas, S. Osterman, and S.A. Diddams, “A 12.5 GHz-Spaced Optical Frequency Comb Spanning >400 nm for Infrared Astronomical Spectrograph Calibration,” Rev. Sci. Inst. 81, 063105 (2010).

D. Braje, M. Kirchner, S. Osterman, T. Fortier, S.A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57 (2008).

S. Osterman, S. Diddams, M. Beasley, C. Froning, L. Hollberg, P. MacQueen, V. Mbele, A. Weiner, “A proposed laser frequency comb based wavelength reference for high resolution spectroscopy”, in Techniques and Instrumentation for Detection of Exosolar Planets III, D. R. Coulter (ed) Proc. of SPIE Vol. 6693, 66931G (2007).

Ultrafast, Nonlinear & Integrated Photonics

D.M.B. Lesko, K.F. Chang, S.A. Diddams, “High-sensitivity frequency comb carrier-envelope-phase metrology in solid state high harmonic generation” Optica 9, 1156-1162 (2022)

J. Guo, et al., “Chip-Based Laser with 1 Hertz Integrated Linewidth” Science Advances, 8 (43), eabp9006 (2022)