embedded computation /lab/correll/ en Embedded Neural Networks for Robot Autonomy /lab/correll/2019/11/01/embedded-neural-networks-robot-autonomy <span>Embedded Neural Networks for Robot Autonomy</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2019-11-01T00:00:00-06:00" title="Friday, November 1, 2019 - 00:00">Fri, 11/01/2019 - 00:00</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/lab/correll/sites/default/files/styles/focal_image_wide/public/article-thumbnail/nn4mc.png?h=7318d8da&amp;itok=Y0qH28Q9" width="1200" height="600" alt="The nn4mc pipeline: from trained model to embedded source code"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/lab/correll/taxonomy/term/12"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/lab/correll/taxonomy/term/19" hreflang="en">embedded computation</a> <a href="/lab/correll/taxonomy/term/20" hreflang="en">robotic materials</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/lab/correll/sites/default/files/styles/large_image_style/public/article-image/nn4mc.png?itok=IUwKT3ac" width="1500" height="345" alt="The nn4mc pipeline: from trained model to embedded source code"> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>We present a library to automatically embed signal processing and neural network predictions into the material robots are made of. Deep and shallow neural network models are first trained offline using state-of-the-art machine learning tools and then transferred onto general purpose microcontrollers that are co-located with a robot's sensors and actuators. We validate this approach using multiple examples: a smart robotic tire for terrain classification, a robotic finger sensor for load classification and a smart composite capable of regressing impact source localization. In each example, sensing and computation are embedded inside the material, creating artifacts that serve as stand-in replacement for otherwise inert conventional parts. The open source software library takes as inputs trained model files from higher level learning software, such as Tensorflow/Keras, and outputs code that is readable in a microcontroller that supports C. We compare the performance of this approach for various embedded platforms. In particular, we show that low-cost off-the-shelf microcontrollers can match the accuracy of a desktop computer, while being fast enough for real-time applications at different neural network configurations. We provide means to estimate the maximum number of parameters that the hardware will support based on the microcontroller's specifications.</p> <p class="text-align-center"></p> <p>Website</p> <p><a href="http://www.nn4mc.com" rel="nofollow">www.nn4mc.com</a></p> <p><strong>Reference</strong></p> <p>Patel, Radhen, Christoffer Heckman, and Nikolaus Correll. "Embedded Neural Networks for Robot Autonomy." In&nbsp;<i>Robotics Research: The 19th International Symposium ISRR</i>, vol. 20, p. 242. Springer Nature, 2022.&nbsp;[<a href="https://arxiv.org/abs/1911.03848" rel="nofollow">Link</a>]</p></div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 01 Nov 2019 06:00:00 +0000 Anonymous 36 at /lab/correll