soft robotics /lab/correll/ en Electro-Hydraulic Rolling Soft Wheel: Design, Hybrid Dynamic Modeling, and Model Predictive Control /lab/correll/2022/05/02/electro-hydraulic-rolling-soft-wheel-design-hybrid-dynamic-modeling-and-model-predictive <span>Electro-Hydraulic Rolling Soft Wheel: Design, Hybrid Dynamic Modeling, and Model Predictive Control</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2022-05-02T09:09:15-06:00" title="Monday, May 2, 2022 - 09:09">Mon, 05/02/2022 - 09:09</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/lab/correll/sites/default/files/styles/focal_image_wide/public/article-thumbnail/roboticwheel_0.png?h=5264e061&amp;itok=uSkERLqt" width="1200" height="600" alt="Motion sequence of the electrohydraulic rolling soft wheel around a pivot on a square platform"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/lab/correll/taxonomy/term/12"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/lab/correll/taxonomy/term/4" hreflang="en">HASEL</a> <a href="/lab/correll/taxonomy/term/17" hreflang="en">model-predictive control</a> <a href="/lab/correll/taxonomy/term/1" hreflang="en">soft robotics</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/lab/correll/sites/default/files/styles/large_image_style/public/article-image/roboticwheel.png?itok=0ZFAa0PB" width="1500" height="925" alt="Motion sequence of the electrohydraulic rolling soft wheel around a pivot on a square platform."> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>Locomotion through rolling is attractive compared to other forms of locomotion thanks to uniform designs, high degree of mobility, dynamic stability, and self-recovery from collision. Despite previous efforts to design rolling soft systems, pneumatic and other soft actuators are often limited in terms of high-speed dynamics, system integration, and/or functionalities. Furthermore, mathematical description of the rolling dynamics for this type of robot and how the models can be used for speed control are often not mentioned. This article introduces a cylindrical-shaped shell-bulging rolling soft wheel that employs an array of 16 folded-HASEL actuators as a mean for improved rolling performance. The actuators represent the soft components with discrete forces that propel the wheel, whereas the wheel's frame is rigid but allows for smooth, continuous change in position and speed. We discuss the interplay between the electrical and mechanical design choices, the modeling of the wheel's hybrid (continuous and discrete) dynamic behavior, and the implementation of a model predictive controller (MPC) for the robot's speed. With the balance of several design factors, we show the wheel's ability to carry integrated hardware with a maximum rolling speed at 0.7 m/s (or 2.2 body lengths per second), despite its total weight of 979 g, allowing the wheel to outperform the existing rolling soft wheels with comparable weights and sizes. We also show that the MPC enables the wheel to accelerate and leverage its inherent braking capability to reach desired speeds—a critical function that did not exist in previous rolling soft systems.</p> <p></p> <p><strong>Reference</strong></p> <p>Ly, Khoi, Jatin V. Mayekar, Sarah Aguasvivas, Christoph Keplinger, Mark E. Rentschler, and Nikolaus Correll. "Electro-Hydraulic Rolling Soft Wheel: Design, Hybrid Dynamic Modeling, and Model Predictive Control."&nbsp;<i>IEEE Transactions on Robotics</i>&nbsp;(2022).</p></div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 02 May 2022 15:09:15 +0000 Anonymous 32 at /lab/correll Miniaturized circuitry for capacitive self-sensing and closed-loop control of soft electrostatic transducers /lab/correll/2021/12/01/miniaturized-circuitry-capacitive-self-sensing-and-closed-loop-control-soft-electrostatic <span>Miniaturized circuitry for capacitive self-sensing and closed-loop control of soft electrostatic transducers</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2021-12-01T00:00:00-07:00" title="Wednesday, December 1, 2021 - 00:00">Wed, 12/01/2021 - 00:00</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/lab/correll/sites/default/files/styles/focal_image_wide/public/article-thumbnail/selfsensing_0.png?h=3c04db45&amp;itok=nWTiurlV" width="1200" height="600" alt="Self-sensing HASELs using capacitive sensing demonstrator"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/lab/correll/taxonomy/term/12"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/lab/correll/taxonomy/term/4" hreflang="en">HASEL</a> <a href="/lab/correll/taxonomy/term/20" hreflang="en">robotic materials</a> <a href="/lab/correll/taxonomy/term/1" hreflang="en">soft robotics</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/lab/correll/sites/default/files/styles/large_image_style/public/article-image/selfsensing.png?itok=68nrX3E0" width="1500" height="1889" alt="Self-sensing HASELs using capacitive sensing demonstrator"> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>Soft robotics is a field of robotic system design characterized by materials and structures that exhibit large-scale deformation, high compliance, and rich multifunctionality. The incorporation of soft and deformable structures endows soft robotic systems with the compliance and resiliency that makes them well-adapted for unstructured and dynamic environments. While actuation mechanisms for soft robots vary widely, soft electrostatic transducers such as dielectric elastomer actuators (DEAs) and hydraulically amplified self-healing electrostatic (HASEL) actuators have demonstrated promise due to their muscle-like performance and capacitive selfsensing capabilities. Despite previous efforts to implement self-sensing in electrostatic transducers by overlaying sinusoidal low-voltage signals, these designs still require sensing high-voltage signals, requiring bulky components that prevent integration with miniature, untethered soft robots. We present a circuit design that eliminates the need for any high-voltage sensing components, thereby facilitating the design of simple, low cost circuits using off-the-shelf components. Using this circuit, we perform simultaneous sensing and actuation for a range of electrostatic transducers including circular DEAs and HASEL actuators and demonstrate accurate estimated displacements with errors under 4%. We further develop this circuit into a compact and portable system that couples HV actuation, sensing, and computation as a prototype towards untethered, multifunctional soft robotic systems. Finally, we demonstrate the capabilities of our self-sensing design through feedback-control of a robotic arm powered by Peano-HASEL actuators.</p> <p><strong>Reference</strong></p> <p>Ly, K., Kellaris, N., McMorris, D., Johnson, B.K., Acome, E., Sundaram, V., Naris, M., Humbert, J.S., Rentschler, M.E., Keplinger, C. and Correll, N., 2021. Miniaturized circuitry for capacitive self-sensing and closed-loop control of soft electrostatic transducers.&nbsp;<i>Soft Robotics</i>,&nbsp;<i>8</i>(6), pp.673-686. [<a href="https://arxiv.org/pdf/2009.06852.pdf" rel="nofollow">PDF</a>]</p></div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Wed, 01 Dec 2021 07:00:00 +0000 Anonymous 43 at /lab/correll