PHYSICAL REVIEW RESEARCH 3, 043221 (2021)

Piezoelectricity in nominally centrosymmetric phases

O a A a 🗅

Te e a l'i da a a i d 4 b e a 4 i 4 f e 4 e e c Parabelae a aeb 4ad d ded P4 4 4 ca e. a. Ferroelastic domains within ferroelastic phases and ferroelastic local domains in the paraphase. Teeaeeaea, aeaea, aeaeaa, caeleealaaa alaa affe aeec caeaaa, caeleeaaaa affe affe aeec caeaaa affe aeacaa affe aeec cae, affe aeec caeaaa affe aeacaa affe aacaa affe aeacaa affe aeacaa affe aacaa aac a. Ferroelastic domains within ferroelastic phases and ferfe 4e a c [16,19,20,22].

b. Ferroelectriclike local polar structures within the para-electric phase. T e e e e 4 intrinsic e 4 e c c

a c 4 [6,19,26,27]. We efe 4 a 4f e.e. a 4 . . . crea 4a lal4 rcre.

Extrinsic versus intrinsic reasonings. A effec e e. 4f 4 c a (ce a c) [1]. I deed, 4 de 4

ale e la ec al la ea 4 beel e 4 ed [2,3,33]. H4 e e e e a 4 a cela 4 al ea la le 4 a 12 4 le
e el f e 4 ca 4 a el e a el 4 | bec ed 4 al effec e
ba ed. c a e e la 4 | all | all | bec ed 4 al effec e
ba ed. c a e e la 4 | fist | all | all | c e | a a c e |
ec 4 | 4 | 4 | all | all | all | c e | a a c e |
ec 4 | 4 | 4 | e | e | e | al el 4 | all | c e | e | a e |
ec 4 | 4 | 4 | e | all | all | c e | e | a e |
ec 4 | 4 | all | all | c e | e | a e |
ec 4 | 4 | all | all | c e | e | e |
ec 4 | all | all | c e | e | e |
ec 4 | all | all | c e | e | e |
ec 4 | all | all | c e | e | e |
ec 4 | e | all | e | e | e | e |
ec 4 | e | all | e | e | e |
ec 4 | e | all | e | e |
ec 4 | e | all | e | e |
ec 4 | e | all | e | e |
ec 4 | e | e | e | e |
ec 4 | e | e | e | e |
ec 4 | e | e | e | e |
ec 4 | e | e | e |
ec 4 | e | e | e |
ec 4 | e | e | e |
ec 4 | e | e | e |
ec 4 | e | e | e |
ec 4 | e | e | e |
ec 4 | e | e | e |
ec 4 | e | e | e |
ec 4 | e | e | e |
ec 4 | e | e | e |
ec 4 | e | e | e |
ec 4 | e | e | e |
ec 5 | e | e |
ec 6 | e | e |
ec 7 | e | e |
ec 6 | e | e |
ec 7 | e | e |
ec 7 | e | e |
ec 6 | e | e |
ec 7 | e | e |
ec 7 | e | e |
ec 8 | e | e |
ec 8 | e | e |
ec 9 | e | e |
ec 1 | e | e |
ec 1 | e | e |
ec 1 | e | e |
ec 2 | e | e |
ec 2 | e |
ec 3 | e | e |
ec 4 | e | e |
ec 4 | e | e |
ec 6 | e | e |
ec 6 | e | e |
ec 7 | e | e |
ec 1 | e | e |
ec 1 | e | e |
ec 1 | e | e |
ec 2 | e |
ec 2 | e | e |
ec 3 | e |
ec 4 | e | e |
ec 4 | e | e |
ec 6 | e |
ec 6 | e |
ec 7 | e | e |
ec 6 | e |
ec 7 | e | e |
ec 6 | e |
ec 7 | e | e |
ec 6 | e |
ec 7 | e | e |
ec 7 | e |
ec 7 | e |
ec 6 | e |
ec 7 | e |
ec 8 | e |
ec 7 | e |
ec 7 | e |
ec 7 | e |
ec 8 | e |
ec 8 | e |
ec 8 | e |
ec 9 | e |
ec 1 | e |
ec 2 | e |
ec 2 | e |
ec 3 | e |
ec 4 | e |
ec 4 | e |
ec 6 | e |
ec 6

II. METHODS

Mear et el ve e e f4 ed 4 15 c4 4 1d 18 d ffe el a e. F. e. a e fe 4 e e c c: a BaTO₃ e c a a BaTO₃ ce a c, e a ec.5(BaT)35.5(3Tc([)

TABLE I. C a ac e e f ee 2 4 4 d	c. 4f c4 4	d ed N	4 . Feez de a	e, T _f , a, 4c a ed
efeer 4 4 d	¹ 4f PNR	ea 4, a e f	Ref. [41 43].	

CA 4 ld	Cacca 4	Caace, c	C4 4 ld		Caace, c
BaTiO ₃	Ferroelectric	T _c = 401 T _c (ceramic)= 393 K	0.6BaTiO3- 0.4 BaZrO3 (BZT40)	Relaxor	T _f =65 K
LiTaO ₃	Ferroelectric	$T_c = 891 \text{ K}$	LaAlO ₃	Ferrolastic	T _c =820 K
		Canosynca Canosynca	romigreskater va	 	Access Connois

MIF. 2. T e.e e. 4 alce. a, ea a, ea . 1 b4 RPS ald RUS, ec a.

B. How to extract the piezoelectric response from the spectra

Il RPS, becare e e c a 41 4f e a c e 4 a ce ee e a , e 4 be, e 4e ec c, e a ea 4f e 4 a ce

IV. PIEZOELECTRICITY IN NOMINALLY CENTROSYMMETRIC PHASES OF COMPOUNDS

A. RPS and RUS spectra of nominally centrosymmetric and bulk-centrosymmetric materials

V. CURRENT UNDERSTANDING OF SPONTANEOUS ATOMIC-SCALE SYMMETRY BREAKING IN PARAPHASES

Telle, e, abe la e, e 4fa, a aeec c, a e acc4di 4, a ide a ile a a a a le 4ba ze 4d, 4 e beca e eac e a a ze 4d, 4 e T. l'4 l'e ec c 4de 4f, a aeec c a beel 4fel ed l'e ec 4l c i c e ca a a 4l a a 4l 4 e 4 e e la e,

FIG. 5. C4, a 4 Af RPS , ec a Af fe Ae ec c BZT20 c4 ec ed 32 a d 84 K ab Ae e fe Ae ec c C e a e a e a e $T_c=296$ K.

are e [] Ade ed a de [fi fc 4 fa e4 (DFT)] 4 eo a d fa c (MD) [80,83]), add 4 fa d ace el a e ace. S [cal , b4 e] A a 4 ff e l e la e le U(IDFT) a d a 4 ff e fee e le U-TS (a DFT-MD) ead 4 ll e bea [fc d] e el 4 a 4 ff e average (S) 4 e 4 ca 4 ff {S} a ll e (a, be cel 4 ll e c), d4 e f4 ll e a a a eared ca 4 e e S)

ACKNOWLEDGMENTS

- [54] J. H4 a a d D. Va de b , F . , c , e e4 4ff 4xe 4 e 4e ec c , P . Re . B 84, 180101(R) (2011).
- [55] A. K. Ta all e ald A. S. Yi 4, Fe 4e ec c effec i le a, e, J. A, P . . 112, 044103 (2012).
- [56] M. Selle, Mc 4 c4 c e 4 le 4 l 4 4 ele4 def4 a-4 l l a lea c44 d la e, Na. C4 r l 4, 2693 (2013).
 [57] C. Ga l 4 l , N. S a , R. H d , M. Feb , M. Ta l , ald
- N. A. S, a d l, Il e face ald i face ab a 41 4f e 4 a a 41 l fe 4e ec c l , P 4c. Na . Acad. Sc. USA 117, 28589 (2020).
- [58] E. V. Br., all all d O. I. Za 4. ..., C all e. ... eo., ar e 4f a fe 4e ec c N die 4,4 a za 41, S4. P . . S4 d Sae **10**, 1121 (1968).
- [59] P. Z b 4, G. Ca a a , a d A. K. Ta a e, Fe 4e ec c effec ⁴ 4 d , A ⁴ . Re . Ma e . Re . **43**, 387 (2013).
- [60] P. Z'b 4, G. Ca a a , P. R. L. We c e, A. B. c e, a d J. F. Sc4, S a 1-G ad el - Ild ced P4 a za 41 1 S T O3 S 1 e
- C a , P . Re . Le . 99, 167601 (2007).

 [61] G. L , S. L , X. D , and E. Sa e, Perree c c and e ec 4 c 4 in fe 4 e a col a e a 4 a 4 in b 4 inda a e and d 4 a in inc 4 in A . P . Le . 114, 202901
- [62] C. He, Z. Wall, X. L, X. Yall, X. L4, and Z.-G. Ye,
- Se f- 4 a red er 4 e c c a d d e 4 effec d fe 4 e c c d e c a , Ac a Ma e . 125, 498 (2017).

 [63] W. Z. 4 , P. C e d, Q. Pald, X. Z a d a d B. C , Lead-f ee e a a e a d e d 4 a a a e d er 4 e c c e 4 d e, Ad. . Ma e . **27**, 6349 (2015).
- [64] E. D., J. Pe re, S. Ka, ba, E. M4 ae, and M. R4, Rea 4 - e be a 4 4f BaT O₃ c a f 4 ac4 c d .-4 d , A , . P . Le . 97, 032903 (2010). [65] A. B. A a d - H d de , J.-H. K d , A. Ma c d , M. G d , a d d
- K. R4 ede, Peo 4 d la c, lc el fe 4e ec c ald e al al 4 c la fe 4e ec c ead c c4 a e PbZ O₃, J. P ..: C4 de .. Ma e 25, 212202 (2013). [66] B. M a 4 a, B. Ma e, C. Pa all .. T. Ma c e e , J. I .. e ,
- M. G4, 4d, 4, R. S4c, B. G. e, ald U. B. ae, H - e eare ici a al fay a 41 le ea 4 $\label{eq:constraints} \text{fe 4e ec } c \quad PbSc_{0.5}Ta_{0.5}O_3 \quad a^{\dagger}d \quad Pb_{0.78}Ba_{0.22}Sc_{0.5}Ta_{0.5}O_{0.5},$ P . Re. . B **77**, 174106 (2008).
- [67] O. A. a., E. K. H. Sa., e., S. C. 4., e., G. I. La, 41, R. W.