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Inverse design of compounds that have simultaneously ferroelectric and Rashba cofunctionality
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FIG. 3. Materials screening based on (line 1) the overlapping of design principles enabling single functionalities, (line 2) unique design
principles for single functionalities, and (line 3) the crossing of the resulting lists. Additional design principles for the optimization of the
cofunctionality for device applications are also included in step 3.

with helical spin texture perpendicular to the asymmetric
potential, as represented in Fig. 1(c). The direction of this
spin polarization depends on the electric dipole, i.e., opposite
dipole direction leads to opposite spin-polarization direction.

Abundance of Rashba compounds

Only few compounds have been reported thus far to have
a large bulk Rashba coefficient, which is defined as the ratio
between the spin splitting ER and the momentum offset kR,
i.e., αR = 2ER/kR [Fig. 1(c)]. For this reason it has been
thought that the Rashba effect is rather rare in nature [55].
Known examples include GeTe (R3m) [30,47], BiTeI (P3m1)
[52,56], metallic PtBi2 [57], the 2D organic-inorganic halide
perovskite (C6H5 2H

H

)2[87
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b4 and b5 guarantee the existence of the double well necessary
in displacive ferroelectrics. In ferroelectrics, the transition
state can also have multiple local motifs with nonzero local
electric polarization that add up to zero (i.e., paraelectric
structure) [65–67]. The theoretical modeling of this polymor-
phous structure requires the energy minimization with respect
to the number of atoms used to define the unit cell [68,69].
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(i.e., nonmagnetic), which results in 13 838 compounds, from
which 6355 are gapped and nonmagnetic (i.e., band gap larger
than 1 meV). As noted above [Fig. 2(a)], step 1 is the filtering
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structures are traditionally assumed to have zero electric po-
larization, meaning that their space groups are CS. If the
spontaneously electrically polarized structure has lower in-
ternal energy than the CS transition state, then an energy
barrier separating opposite polarization states exists [DP b5
in Fig. 1(b)]. This barrier has to be surmountable to allow
ferroelectric properties [DP b6 in Fig. 1(b)].

a. Identify from compounds with nonzero polarization those
that can be deformed into the CS transition state [filter b4 in
Fig. 1(b)]. Among the list of 230 crystalline space groups,
as given by Table I, the CS ones have space-group numbers
(arranged into a 3D Bravais lattice): triclinic (1), monoclinic
(10–15), orthorhombic (47–74), tetragonal (83–88 and 123–
142), rhombohedral (147, 148, and 162–167), hexagonal (175,
176, and 191–194), and cubic (200–206 and 221–230). For
each nonpolar nonmagnetic insulator obtained from step 1, we
determine all the symmetry groups that can be generated only
by atomic displacements (from the original atomic positions)
and classify them into the classes defined as centrosymmetric
space groups (see Table I). The symmetry group identification
in the displacive structures is performed using the symmetry
detection algorithm of pymatgen [78] using atomic displace-
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FIG. 5. Energy spectrum at the kxy plane in the Brillouin zone of BrF5. The color scale stands for the energy of the conduction bands with
respect to the CBM. The energy minima along the �-Y symmetry line are indicated by the green points RY and R� . The band crossing (BC)
along this path is also indicated by the white point. The spin texture for the polarization up and down (PUp and PDown) is shown for the circular
and rectangular inset.

spin splitting at the CBM of ≈30 meV with a Rashba pa-
rameter of 0.5 eV/Å (green square in Fig. 4). We identify two
Rashba spin splittings along the �-Y symmetry line, which are
indicated in the band structure as R� and RY . Between these
RSSs, there is a band crossing (BC) indicated by the white
dot. As we will show, this BC has a helical spin texture.

2. Transition state

When this F atom is exactly equidistant from the two Br
atoms, the BrF5 space group is Cmcm (see Table II) and the
compound is centrosymmetric. This fact implies that the total
electric polarization is zero (blue point in the double well
represented in Fig. 4). The total energy of this transition state
configuration is about 80 meV/atom higher than the ground
states. As expected, since the electric polarization of the tran-
sition state (TS) is zero, its energy bands are spin degenerated,
which is illustrated by the CBM in Fig. 4.

C. Confirmation of the reversal of spin texture when the FE
polarization is flipped

Figure 5 shows the energy spectrum for the conduction
band at the kxy plane in the Brillouin zone of the FERSC
BrF5. The spin texture is shown for selected regions (indicated
in green). The minimum energy for the Rashba spin splitting
(R� and RY ) is indicated, as well as the band-crossing point.
As shown in the circular region around the � point, the spin

texture of the configuration with polarization “Up” has op-
posite direction to the one for the structure with polarization
“Down.” This confirms the reversal spin texture expected in
FERSCs.

V. CONCLUSIONS

We establish a standard inverse design approach for the
search of cofunctionalities, which is based on causal physical
models and not in numerical correlations as in machine learn-
ing approaches. This strategy is then applied to the special
case of stable compounds that are simultaneously ferroelectric
and bulk Rashba compounds. This inverse design approach is
based on the causal physical design principles for enabling
the Rashba effect, ferroelectricity, and cross-functionality. In
a peanut schema, we first define common DPs and unique DPs
for single functionalities. The compounds having the union
of these DPs are then predicted to possess cofunctionality,
when the specific cofunctionality does not require additional
unique conditions. This inverse design approach reveals 52
previously synthesized compounds that were not realized to
be FERSC having spin splitting at the band edges. In the list
of predicted compounds, 24 FERSCs are in the most stable
structure (on the convex hull). Some of the found compounds
have giant spin splitting, e.g., BrF5 (Cmc21), TlIO3 (R3m),
ZnI2O6 (P21), LaTaO4 (Cmc21), Tl3S3Sb (R3m), Sn2P2Se6

(Pc), and Bi2SiO5 (Cmc21) that have large Rashba spin split-
ting of 31, 57, 111, 40, 90, 67, and 76 meV, respectively.

144106-11
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The successful prediction of stable FERSCs with optimizing
properties (e.g., Rashba bands at the band edges and small
ferroelectric barrier) validates the proposed strategy. We hope
that the theoretical prediction in this paper will be experimen-
tally verified, which can open the way for future spintronic
applications and the realization of devices based on the co-
functionality of ferroelectricity and Rashba effect.
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