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FIG. 1. (a) Experimentally observed donor, acceptor, and intra-d excitations in CxaP:Cr, and the theoretical assignments of the
multiplet states and dominant one-electron configurations. See Appendix, subsection 1, for details and references. T denotes tentative
values. (b) One-electron mean-field analog for donor, acceptor, and intra-d excitations in GaP:Cr.

the conduction band when a second electron is captured
(producing T +). Similarly, if a level will exist in GaP
(i.e., T + when neutral) it would not exist in ZnS ( T +
when neutral). In fact, the experimental data summarized
in Figs. 1(a)—5(a) show that, for GaP, the impurities Mn
and Co exist in the gap in two oxidation states, Fe and Ni
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FIG. 3. Same as Fig. 1, for GaP:Fe; see Appendix, subsection 3, for details and references.

suggest that these impurities have localized orbitals
resembling atomic 3d orbitals. Hence, much like the situ-
ation in biological electron-transporting molecules, (e.g.,
Cytochrome C), where the different oxidation states of the
transition atom (i.e., Fe) are separated by less than 1 eV,
so are the different ionization states of a TA compressed
into a narrow band-gap range when they exist as impuri-
ties in semiconductors. Third, the absorption spectra of
Gap:TA at sub-band-gap photon energies show sharp

lines, ' resembling the familiar multiplet transitions in
free atoms, except that the energy range of the spectra is
compressed by about a factor of 10. Fourth, whereas the
free-ion orbital ionization energies of Fig. 6 show a
change in slope of 2.5 eV between high-spin ionizations
and low-spin ionizations (Mn + d and Fe + d, respec-
tively), the change is 5 times smaller for the correspond-
ing impurities (0.45 eV between the Mn and Fe first ac-
ceptors, cf. Figs. 2 and 3). Finally, EPR (Refs. 7 and 8)
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tronic structure of an impurity in an infinite host crystal,
using a series of electronic configurations, one at the time,
appropriate for the various transitions. We use for this
purpose the first-principles quasiband crystal-field
(QBCF) Green's-function method of Lindefelt and
Zunger. It provides highly accurate self-consistent solu-
tions to the problem within the local-density framework.
We have previously shown the highly stable convergence
properties of this method, ' have demonstrated that
when applied to problems treated by other first-principles
Green's-function methods +" + ' (the Si vacancy (Ref.
58) and Si:S (Ref. 61), and Si:Zn [(Ref. 59(a)]) the same
results are reproduced. We have further applied it to
numerous other systems (0, S, and Se in Si, ' substitution-
al and interstitial " "3d impurities in silicon, com-
parison of Cu, Ag, and Au impurities in silicon "), for
which no application with any any
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The change in total free energy attendant upon this elec-
tron emission is denoted as E(OI + ) and given by

E'"(0/+ ) =EP'[A+ (CB)'t" ']—E"[A' (CB)'t"]

or

&"(0/+)=Ep '[A+, (CB)'e '] ET—' '[A', (CB) e ] .

The complementary process of a single-donor transition
through a hole capture by the valence band is possible (al-
though less likely) and can be described as

AO (VB)M —ltn A+ (VB)Mtn —I

or

AO (VB)M —1 m A+ (VB)M m —1

Double-donor transitions can be constructed in analogy
with the single-donor electron-emission process.

C. Mott-Hubbard Coulomb energies
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Eqs. (1)—(9) for the various transitions denote explicitly
only the levels e and t that undergo an occupation change.
This does not imply, however, that the corresponding
transition energies depend only on these (gap) levels. For
transition-atom impurities in ionic host crystals ' it is
often assumed that the e and t levels have only a weak
electronic coupling to the host crystal (since all 3d orbitals
appear as gap levels) and only they are involved in the ex-
citation. This is not the case for transition-atom impuri-
ties in covalent

covalent
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was smaller than the number of parameters, a range of
these parameters, consistent with the data, was deter-
mined. The interested reader is referred to Ref. 52 for a
complete description of the details of the method. We
next apply this method to Gap:TA and discuss the con-
tent of this deconvolution.

C. Analysis of the experimental data for GaP:TA

The chemical trends obtained for A,„A,„and b,ff for all
3d impurities for which data exist in ZnO, ZnS, ZnSe,
and Gap, as well as for the Mott insulators MnO, CoO,
and NiO, were described previously. Using these experi-
mentally deduced mean-field parameters, one can calcu-
late the full multiplet structure of the ground and excited
states of A, A+, A, and A centers, establishing also
the predominant one-electron configuration e t" in each
multiplet. The Appendix gives the details of the fit for
GaP:TA and the resulting mean-field parameters. Figures
1(a)—5(a) show the assignments of multiplets and the cor-

.
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small negative (e.g., the E~ T2 intracenter excitation in
GaP:Fe), multiplet corrections. Third, note that the MF
portion of the transition energy is positive, with only one
exception
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TABLE II. Comparison of the present local-pseudopotential band structure of GaP with the fitted

the empirical
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VI. RESULTS

A. Near-band-gap levels

1. Donors, acceptors, and Coulomb energies

Figure 8 depicts the self-consistently calculated
impurity-induced e and t2 energy levels in the vicinity of
the fundamental band gap, using the occupation number
pertinent to the transition-state H( —l0) first acceptors
[Figs. 1(b)—S(b)j. Along with the calculated levels (open
circles), we give the mean-field energies deduced from ex-
periment (solid circles) and indicate the correspondence
between experiment and theory by arrows to guide the
eye. Similar to our study of 3d impurities in Si, we find
two types of impurity-induced levels in the gap: the
upper t2 dangling-bond hybrid (DBH) and a lower-energy
crystal-field resonance (CFR) of type e. Whereas the
tz level is confined to the band-gap region, starting in
GaP:Zn as a shallow acceptor at E„+0.02 eV and ending
up in GaP:Cr as a deep acceptor at E, + 2.02 eV, the
e " level exists as a valence-band resonance for
TA=Ga, Zn, Cu, Ni, and Co, and emerges first into the
band gap for GaP:Fe. Our analysis of the data shows that
the first-acceptor transitions for the impurities Zn, Cu,
Ni, Mn, and Cr involve the ionization of the t2 elec-
tron, whereas the acceptor states of Co and Fe involve
ionization of the ec" electron [Figs. 1(b)—5(b)j. This
switch between Ni and Co, or Fe and Mn, cannot be de-
duced without acknowledging many-electron effects.
Comparing the calculated values and the experimentally
deduced values (given here in parentheses) for the first-
acceptor levels associated with the t2, we find, for
GaP:Zn, GaP:Ni, GaP:Mn, and GaP:Cr, the values 0.02
(0.07), 0.26 (0.14 to —0.24), 1.74 (1.59), and 2.02 (1.65)
eV, respectively. Notice that for the d system GaP:Zn
the multiplet correction for the first-acceptor state van-
ishes and hence the mean-field prediction should be
directly comparable with experiment (after the small
effective-mass binding energy -0.05 eV (Ref. 8)
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eV. The Coulomb repulsion energies UMF(A ) are hence
1.26 —0.26=1 eV for GaP:Ni (experimentally deduced
value is 1.23—1.29 eV) 2.58—2.02=0.56 eV for GaP:Cr
(experimentally deduced value is 1.04 eV), and the
UM'F'(A ) for GaP:Fe is 1.53 —0.13=1A eV (exp™n-
tally deduced value is 1.6 eV). Our calculated second-
acceptor energies are hence within 0.2 eV from experi-
ment and the ca1culated Coulomb repulsion energies are
within 0.2—0.5 eV from experiment, being always too
small. This suggests that the A state(e. g., Cr +) is sta-
bilized by lattice distortion more than the A state
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about 80% of the discrepancy. We conclude that al-
though the A,ff obtained in cluster calculations
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uation is also not likely to occur, as the large crystal-field
splitting puts the t+ level above the e " level. For the
intermediate elements Ni, Co, Fe, Mn, and Cr, our model
and that of Ludwigand Woodbury agree on the relative
positions of the t+ and e+"R levels.

b, VI'."'(r)

~t,rr),=b.Vi"'(r)+
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inant spherical component Ape o(r) [Fig. 16(a)], as well as
smaller, longer-range nonspherical components hpI 3(r)
and Apt 4(r) [Fig. 16(b)], reflecting a change in the aniso
tropy of the bonding. When we integrate bpI o(r) up to a
given distance R, we find the function

a(R)= f Si, ,(r)dr, (21)

which represents the rate at which charge is accumulated
around the impurity. Clearly, for large R we expect to
find limz h(R)=hZ, i.e., the total excess of impurity
electrons over those of the Ga atom they replace. Figure
17 displays b(R) and shows that (i) the saturation limit is
attained within a relatively short distance from the impur-
ity site (-4—5 a.u. ), consistent with the rapid screening
evident from Figs. 13 and 14, and (ii) A(R) exceeds its
asymptotic limit of b,Z inside the central cell. This means
that at short distances the impurity overscreens itself and
compensates for this by having a negative charge fluctua-
tion bp(r) ~0 at a larger distance. This is the origin of
the maxima in r hV"'(r) [where arrows are pointing in
Fig. 13(d)]. We find that this "screening overshoot" is
characteristic also of substitutional 3d impurities in
silicon. ". " Notice that whereas the density fluctua-
tion bp(r) recovers only after a relatively short distance
from the center of the perturbation, the individual
impurity-induced wave functions (e.g., the tz and ec"
orbitals
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significant proportions of electron-electron multiplet
corrections to the acceptor and donor ionization energies
and to the Mott-Hubbard Coulomb repulsion energies.
This is concluded from a systematic deconvolution of the
observed transition energies into a mean-field one-electron
piece and a multiplet correction piece. One-electron
theory can, at best, . reproduce the first component.
Many-electron effects decay in their relative importance
for heavier 3d elements (e.g., from Ni to Cu, being finally
zero in Zn).

(ii) Cation substitutional transition-atom impurities in
semiconductors have a universal energy-level scheme,
showing a bonding, d-like t2". crystal-field resonance, an
antibonding p-d —like t2 dangling-bond hybrid, and a
nonbonding, d-like, e " level between them. The impur-
ity states that evolve from the atomic 3d orbitals are e "
and t2", not e " and t2, as hypothesized by Ludwig
and Woodbury. This pattern of energy levels is consistent
with a simple three-level scheme, showing that the physi-
cally relevant (level-confining) gap is the tt' gap (-3—4
eV), not the optical gap. Some acceptor transitions (e.g.,
in Zn, Cu, Ni, Mn, and Cr) evolve from the ionization of
the t2 orbital, while others (Co and Fe) evolve from the
ionization of the e " orbital.

(iii) The nonmonotonic trend in the observed first-
acceptor energies (e.g. , minimum at GaP:Mn, local max-
imum at GaP:Fe) is largely a consequence of many-
electron multiplet corrections (large and negative in
GaP:Mn, smaller and positive in GaP:Fe). The one-
electron e and t energy levels show a purely monotonic
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data, and Kaufmann and Koschel" suggested a minimum
energy of E„+(1.15+0.07) eV from optically induced
EPR. Recently, Kirilov et al. ' contested this conclusion.
We label, therefore, this transition in Fig. 1(a) as "tenta-
tive" (T). Chromium is the only 3d impurity in GaP that
was found to have a donor (0/+ ) transition. It occurs at
E„+
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by the ENDOR experiment of Kirillov and Teslenko.
Recently, Masterov et ah. have challenged the interpre-
tation of Kaufmann and Schneider that the A center
is a substitutional d ion in the A2 state. Instead, they
suggested that the observed EPR might be due to a neu-
tral A central in the d interstitial position in the A2
state. In the absence of fine-structure experiments, it is
not possible to distinguish between these' A2 and A2
models from EPR. The A center has
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closer to our result of 0.65 eV. A mystery still remains as
to why the excited state of A was not observed [it is ob-
served in ZnS:Ni and ZnSe:Ni (Ref. 52)]. We display in
Fig. 5(a) the experimental results as given
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