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1344 D M Wood but which possess 

no simple systematics (e.g. they are 
not diagonally dominant or  sparse). Such is the case, for example, in ground-state 
electronic structure calculations for molecules, solids and  surfaces, where our relative 
ignorance of what constitutes a physically motivated basis set {I+,)} often leads to the 
need for very large bases of simple functions. This is also the case when reasonable 
basis functions for each particle are known, but when the number of such particles 
(or quasiparticles) is large, e.g. in spin Hamiltonian problems. Interestingly, many 
well known approximations in electronic structure theory have, in fact, evolved as a 
result of the difficulty with direct matrix diagonalisation by the C H  method. For 
instance, an  expansion in terms of a simple plane wave basis set constitutes a reasonable 
and practical description of systems in a weak periodic potential (i.e. only a few Fourier 
components of the potential are important). The need to limit the number of plane 
wave basis functions 
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2. Iterative methods for large matrix diagonalisation approaches to this problem. 

In what follows it will be assumed that one has 
identified a finite dimension N such that the matrices H and S describe adequately 
the physics of the problem at hand. One can then use the methods of finite-dimensional 
Hilbert spaces to proceed. 

The first point of similarity among the different iterative methods for diagonalisation 
is that most define or  use three distinct sets of auxiliary N-dimensional vectors. These 
are (i) the basis set {Id,), i = 1, . . . , N } ,  a set of functions of position used to compute 
the numerical elements of H and S ;  (ii) the complete set, { lxz ) ,  i = 1, . . . , N}, a set of 
vectors which must span the entire N-dimensional Hilbert space and in terms of which 
any  vector may be expressed; (iii) the expansion set: most iterative methods share the 
assumption that all eigenvectors of interest may be expanded in a small set of N- 
dimensional vectors { I  b,), j = 1, . . . , Nb} (the expansion set);  here Nb << N. The 
expansion set need contain only Nb elements precisely because it need span only that 
part of the N-dimensional Hilbert space corresponding to the lowest n (or smaller) 
eigenvectors of H. Depending on the iterative method discussed, Nb may be smaller 
than or greater than n. 

We will not dwell on the properties of ;il
(problem), )Tj-0.04001 Tc 10.4 0 0 10.5 285.1 277.4 Tm(of )Tj0.03 Tc 9.5 0 0 10.1 297.1 277.4 Tm(‘small’ )Tj0.06999 Tc 3.2632 0 Td(dimensions )Tj/F17 1 Tf 10.5 0 0 10 380.6 277.4 Tm(No )Tj/F10 1 Tf 0 Tc 10.5 0 0 10.1 394.3 277.4 Tm(x )Tj/F17 1 Tf 0.04999 Tc 10.8 0 0 10 402.2 277.4 Tm(No, )Tj/F11 1 Tf 0.09 Tc 9.5 0 0 10.1 47.3 265.7 Tm(and )Tj0.06999 Tc 1.8947 0 Td(the )Tj0.03 Tc 1.6631 0 Td(rest. )Tj0.04999 Tc 2.3789 0 Td((With )Tj0.06999 Tc 2.8316 0 Td(the )Tj0.04999 Tc 1.6421 0 Td(exception )Tj-0.04001 Tc 10.4 0 0 10.5 190.1 265.7 Tm(of )Tj0.06999 Tc 9.5 0 0 10.1 200.9 265.7 Tm(the )Tj0.04999 Tc 1.6947 0 Td[(Lowdin )5.6(perturbation )]TJ0.07999 Tc 9.6 0 Td(approach )Tj0.04999 Tc 4.5158 0 Td((Lowdin )Tj0.03 Tc 4.221 0 Td(1951), )Tj0.06999 Tc -36.2 -1.2178 Td(none )Tj0.03 Tc 2.6 0 Td(of )Tj0.07999 Tc 1.2632 0 Td(the )Tj0.06999 Tc 1.821 0 Td(methods )Tj0.09 Tc 4.1895 0 Td[(to )34.8(be )]TJ0.04999 Tc 2.7263 0 Td[(described )-70.8(below )]TJ0.07999 Tc 7.7579 0 Td[(depends )19.5(for )]TJ0.03999 Tc 5.8421 0 Td(its )Tj0.04999 Tc 1.4105 0 Td(success )Tj0.09 Tc 3.6842 0 Td((or )Tj0.04999 Tc 1.7263 0 Td(lack )Tj0.06999 Tc 2.1895 0 Td(thereof) )Tj0.04999 Tc 10 0 0 10.3 47.3 241.7 Tm(on )Tj9.5 0 0 10.1 61 241.7 Tm[(the )-12.3(extent )]TJ0.07999 Tc 4.7474 0 Td(to )Tj0.04999 Tc 1.2105 0 Td(which )Tj0.06999 Tc 3.0105 0 Td(the )Tj0.03999 Tc 1.7158 0 Td(full )Tj/F17 1 Tf 0 Tc 10.1 0 0 10 181 241.7 Tm(N )Tj/F10 1 Tf 10 0 0 9.3 192.2 241.7 Tm(x )Tj/F18 1 Tf 12.9 0 0 11.8 199.9 241.7 Tm(N )Tj/F11 1 Tf 0.04999 Tc 9.5 0 0 10.1 211.9 241.7 Tm(matrices )Tj0.06999 Tc 4.0947 0 Td[(can )44.3(be )]TJ/F9 1 Tf 0.00999 Tc 9.4 0 0 10.1 282 241.7 Tm(accurately )Tj/F11 1 Tf 0.04999 Tc 9.5 0 0 10.1 327.6 241.7 Tm(partitioned )Tj0.06999 Tc 5.3053 0 Td(into )Tj0.03 Tc 2.1263 0 Td(‘big’ )Tj0.07999 Tc -36.9158 -1.1881 Td(and )Tj0.03 Tc 2.1474 0 Td(‘small’ )Tj0.04999 Tc 3.4105 0 Td(parts.) )Tj0.09 Tc 3.6105 0 Td(One )Tj0.03999 Tc 2.3579 0 Td(directly )Tj0.04999 Tc 3.8631 0 Td(diagonalises )Tj0.07999 Tc 5.9895 0 Td(the )Tj/F17 1 Tf 0.06999 Tc 10.5 0 0 10 269.3 229.7 Tm(No )Tj/F10 1 Tf 0 Tc 10 0 0 9.3 283 229.7 Tm(x )Tj/F17 1 Tf 0.06999 Tc 10.5 0 0 10 290.9 229.7 Tm(No )Tj/F11 1 Tf 0.04999 Tc 9.5 0 0 10.1 306.7 229.7 Tm[(problem )-311.8((say, )]TJ0.03999 Tc 6.8526 0 Td(by )Tj0.07999 Tc 1.5368 0 Td(the )Tj0.09 Tc 8 0 0 7.3 404.2 229.7 Tm(CH )Tj0.04999 Tc 9.5 0 0 10.1 47.5 218.2 Tm(method )Tj0.06999 Tc 3.7158 0 Td(because )Tj/F17 1 Tf 10.5 0 0 10 121 218.2 Tm(No )Tj/F11 1 Tf 0.03 Tc 9.5 0 0 10.1 135.6 218.2 Tm[(is )-77.2(‘small’) )]TJ0.09 Tc 4.7789 0 Td(and )Tj0.03999 Tc 2.1F11 1 Tf[ us a n d  3 . 3  0 . 0 7 9 9 9  T a 4 1 . 7  T m  ( m a t r i c e s  ) T j  0 . 0 7 9 9 9  T i n p u t 4 . 7 7 8 9  0 8 ( b e  ) ] T J  0 . 0 6 9 9 9  T  5 . 3 0 5 3  0  m a t r i c e s  
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necessity for eigenvalue sorting:. The first step is to use the Choleski-Householder 
method to find the lowest n eigensolutions of Ho. Next, one augments the No- 
dimensional eigenvectors of Ho (which we will denote { I U ? ) , ~  = 1 , .  . . , No}) with ( N  - 
No) zeros to make them, together with the set of eigenvalues of Ho (denoted {AY}) ,  
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where we have used the linearity of the residual operator. Unfortunately, the formal 
solution 

/6A)  = -( H - EapS)-’ /  R (  lAap), E”’))  (2.8) 

is no easier to solve than the original 



1348 D overcome the limitations of an 
inadequate complete set. 

2.4. The Lanczos method 

Probably the oldest and best k:,own basis-expansion 
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sequence may be improved considerably. (The usual Davidson procedure (Davidson 
1975, Butscher and Kammer 1976) corresponds to the choice m = 1.) 

2.6. The Lowdin perturbation method 

This technique (Lowdin 1951, Brust 1964, 1968) bears no close relationship to any of 
the approaches described above or below, but is widely used to ‘fold in’ the effects of 
a large N x N Hamiltonian into a much smaller No x No effective Hamiltonian. For 
the matrix eigenproblem ( H  - A l ) l x )  = 0, the N x N Hamiltonian H is partitioned into 
four blocks, where Ho is No x No as shown schematically: 

(2.15) 

so that, provided the number of eigenvalues sought, n, satisfies n S No<< N,  the effective 
eigenproblem may be reduced to diagonalising the No x No matrix 

(2.16) 

Obviously the effective matrix elements now depend on the actual eigenvalues of the 
full Hamiltonian H ;  the iterative solution of the new problem (2.16) naturally generates 
the so-called Brillouin-Wigner perturbation series (e.g. Ziman 1969). In practice (Brust 
1964, 1968), to find eigenvalues of H near A: (an eigenvalue of Ho) one replaces A 
above by A y ,  or even by a free-electron approximation to it. As typically implemented, 
however, the Lowdin scheme keeps only the lowest two orders in perturbation theory. 
As such, the technique may diverge from a correct eigenvalue or converge to an 
incorrect one, as will be illustrated below. 

H ; ~  = tz0- B( c - A I ) - ’ B + .  

3. RMS-DIIS method 

The ‘residual minimisation/direct inversion in the iterative subspace’ ( R M M - D I I S  or 
simply DIIS)  method due to Bendt and Zunger (1982a,b) will be discussed in detail 
below; it can be described by the choices, for iteration number p and eigenvalue j ,  

and 
{Ix l )}={Ia~) , J=l  , . . . ,  N o } + { I e , ) , j = N o + l ,  . . . ,  NI (3.1) 

{Ib,)}[p=0/1/2/ . . . ] = [ I  ~y)/l6A:”)/lSA:~’)/ . . . .  (3.2) 
The first distinguishing feature of the D I I S  method is its choice of complete set. As 
discussed after equation (2.9) above the usual diagonal approximation in the Newton 
step (equation (2.10)) becomes exact if the complete set selected consists of the true 
eigenvectors of H. Thus we expect that a complete set consisting of approximate 
eigenvectors of H (i.e. the set { lay)})  of eigenvectors of Ho augmented with zeros to 
make them N-dimensional) plus a set of unit vectors (to make the complete set contain 
N linearly independent vectors) will be a considerably better choice than the usual 
set {le]) ,  j = 1, . . . , N}. Moreover, the eigenvectors of Ho are immediately available 
since Ho was diagonalised to provide starting guesses for the eigenvalues and eigenvec- 
tors to be refined by the iterative process. For our choice (3.1), then 

(3.3) 
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The expansion set {I b,)} requires further explanation. Like the other basis expansion 
methods, D I I S  uses a Newton step, equation (3.3), to generate a new vector /6A) which 
is then added to {Jb,)}. The elements of this set are thus the )6A) generated in each of 
the preceding iterations, so that DIIS  clearly incorporates information from the entire 
iteration history for the given eigenvector being refined. Since the vectors {16A"))} are 
generated by the iteration process, they are said to span the 'iterative subspace'. The 
great power of the DIIS  method lies, however, not in the choices for {Ib,)} and {Ix,)} 
but in the fact that, to produce the new approximate eigenvector of H one asks: 'what 
linear combination of the expansion vectors minimises the residual of the resulting 
vector IA",qs)?' (hence the R M M  of residual minimisation). 

In what follows the steps involved will be described sequentially. It will be assumed 

IA("-')), the latest approximations to the eigenvalue and its eigenvector. At this point 
the expansion set consists of {I8A'O'), )6A")), . . . , 18A("-'))}, where we have defined 
ISA'") = lay), the input guess the set 

{ lb l ) } ,  
which now contains ( m  + 1)  elements. (One generally forms and stores the set of 
vectors {HIGA'"'')} and  {S16Aim')} as the {ISA'"'))} are generated, for reasons which 
will become obvious in step (ii)). 

that upon entering the mth iteration one has available E,,, = E'"-') and (Aold) = 

(ii) Perform the D I E  step: one writes 

(3.4) 

for k = 0 , .  . . , m. Letting la) denote the ( m  + 1)-dimensional vector whose components 
are the ak, this problem is equivalent to finding the eigenvector of lowest eigenvalue 
of the generalised Hermitian eigenproblem: 

Pia) = p*QIa) (3.6) 

Pry =((If- Eol,S)SAi')l(H- E,,,S)GA'") (3.7) 

where 

and 

Q~~ = (GA(')/S/SA(~)). (3.8) 

Since P and  Q are matrices of size only ( m  + 1) x ( m  + 1) and the number of iterations 
required is small, this diagonalisation may be performed by the Choleski-Householder 
method in negligible time. (This step has been termed by Pulay, who introduced this 
step to accelerate the convergence of self-consistent solutions of the Schrodinger 
equation (Pulay 1980), 'direct inversion in the iterative subspace', hence RMM-DIIS.) 

(iii) Substituting the coefficients {ak} minimising the residual into (3.4), one then 
calculates 

E E& = (A",qsI HI A",q";/( AElYs I S I AE;s) (3.9) 

(3.10) 
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Figure 1. Iteration histories for the modified Nesbet matrix: A, block Davidson ( m  = n = 4), 
E = IO-’: B, Davidson: C, D I I S ;  D, E, F, simultaneous coordination relaxation for m = 5,  
3, 1 ,  respectively (see Raffenetti 1979); G, our version of unsymmetric Lanczos (equation 
( 2 . 1 2 ) ) :  H, simple iteration using the D I I S  complete set (equation ( 3 . 1 ) ) ;  I ,  simple iteration 
using the Nesbet complete set (see equation ( 2 . 1 3 ) ) .  

first five diagonal matrix elements as an imitation of the effects of five-fold degeneracy. 
Inspection of figure 1 shows the following. 

(i) The three most rapidly convergent methods are the block Davidson method 
(with m = n =4 ,  curve A), the regular Davidson method ( m  = 1, curve B) and DIIS, 
curve C. 

( i i )  The ‘simultaneous coordinate relaxation’ method (Raffenetti 1978) (not dis- 
cussed here), applied here in a block form, converges at a rate which is fairly sensitive 
to the number of eigenvectors being refined simultaneously ( m  = 1,3,  5 ;  curves F, E, 
and D, data of Raffenetti (1978)). 

(iii) Our  variant (equation (2.12)) of the unsymmetric Lanczos procedure (curve 
G) app0.10i1a2f ((curve )Tj0.07i 10.1 62.9
0.04999 Tc 4.8 0 Td(extremely )Tj0.03999 Tc 4.821 0 Td(slowly, )Tj0.06 Tc 8.4 0 0 10.4 306.7 295.8 Tm(if )Tj0.03999 Tc 9.5 0 0 10.1 316.8 295.8 Tm(at )Tj0.00999 Tc 10.5 0 0 10.1 328.3 295.8 Tm(all. )Tj0.04999 Tc 9.5 0 0 10.1 347.8 295.8 Tm[(Simple )-50.3(iteration )]TJ-0.04001 Tc 10.4 0 0 10.1 48 283.9 Tm(of )Tj0.06999 Tc 9.5 0 0 10.1 60 283.9 Tm[(the )-37.5(Newton )-41.4(step )]TJ0.04999 Tc 7.9053 0 Td(using )Tj0.06999 Tc 2.7579 0 Td(the )Tj0.04999 Tc 1.7684 0 Td(diagonal )Tj0.06999 Tc 4.2421 0 Td(approximation )Tj0.09 Tc 7.0526 0 Td(and )Tj0.03999 Tc 2.0421 0 Td(a )Tj0.04999 Tc 0.8632 0 Td(unit )Tj0.03999 Tc 2.1474 0 Td(vector )Tj0.04999 Tc 3.1263 0 Td(complete )Tj0.03999 Tc 4.4737 0 Td(set )Tj0.07999 Tc -37.5895 -1.1584 Td((the )Tj0.04999 Tc 2.1474 0 Td(‘Nesbet’ )Tj0.06999 Tc 4.0947 0 Td(approximation, )Tj0.03999 Tc 7.2947 0 Td(curve )Tj0.12 Tc 8.6 0 0 10.5 204 272.2 Tm(I) )Tj0.04999 Tc 9.5 0 0 10.1 214.8 272.2 Tm(also )Tj0.03999 Tc 2.1684 0 Td(fails )Tj0.09 Tc 2.2316 0 Td(to )Tj0.03999 Tc 1.2842 0 Td(converge. )Tj0.04999 Tc -21.621 -1.1683 Td(Since )Tj0.07999 Tc 2.9053 0 Td(the )Tj0.00999 Tc 1.9368 0 Td(first )Tj0.06999 Tc 2.1789 0 Td[(three )-162.6(methods )]TJ0.03999 Tc 7.1684 0 Td(have )Tj0.06999 Tc 2.5789 0 Td(the )Tj0.03999 Tc 1.8947 0 Td(best )Tj0.04999 Tc 2.3474 0 Td(convergence )Tj0.03999 Tc 6.0947 0 Td(rates, )Tj0.03 Tc 2.9263 0 Td(we )Tj0 Tc 1.7684 0 Td(will )Tj0.03999 Tc 2.1789 0 Td(confine )Tj0.04999 Tc -35.5474 -1.1683 Td(discussions )Tj0.03999 Tc 5.4842 0 Td(below )Tj0.07999 Tc 3.1053 0 Td(to )Tj0.04999 Tc 1.2842 0 Td[(these )-121.4(methods. )]TJ0.06999 Tc 7.4316 0 Td(The )Tj/F2 1 Tf 0.03999 Tc 9.3 0 0 10.1 234 248.6 Tm(m )Tj/F8 1 Tf 0 Tc 11.1 0 0 8 244.3 248.6 Tm(= )Tj/F6 1 Tf 0.04999 Tc 7.4 0 0 10 253.7 248.6 Tm(1 )Tj9.5 0 0 10.1 261.6 248.6 Tm((regular )Tj0.06999 Tc 4.021 0 Td(Davidson) )Tj0.07999 Tc 5.1474 0 Td(and )Tj0.10999 Tc 7.6 0 0 7.3 368.9 248.6 Tm(DIIS )Tj0.03999 Tc 9.5 0 0 10.1 389.8 248.6 Tm(results )Tj-35.9474 -1.1584 Td(converge )Tj0.06999 Tc 4.4737 0 Td(at )Tj0.03999 Tc 1.2947 0 Td(essentially )Tj0.06999 Tc 5.0737 0 Td[(the )-121.7(same )]TJ0.03999 Tc 4.5684 0 Td
(rate, )Tj0.06999 Tc 2.3789 0 Td(though )Tj0.04999 Tc 3.6105 0 Td(there )Tj0 Tc 2.7263 0 Td(is )Tj0.07999 Tc 1.1684 0 Td(an )Tj0.04999 Tc 1.5158 0 Td(offset )Tj0.06999 Tc 2.8316 0 Td(because )Tj0.03 Tc 4.0421 0 Td(of )Tj0.03999 Tc 1.3368 0 Td(different )Tj0.04999 Tc -35.0316 -1.1782 Td(handling )Tj-0.01001 Tc 10.4 0 0 10.3 91.7 225 Tm(of )Tj0.07999 Tc 9.5 0 0 10.1 106.1 225 Tm(the )Tj0.00999 Tc 2.021 0 Td(first )Tj0.04999 Tc 2.2947 0 Td[(iteration. )-490.8(The )]TJ/F2 1 Tf 0.03999 Tc 9.3 0 0 10.1 216 225 Tm(m )Tj/F8 1 Tf 0 Tc 11.6 0 0 8 226.1 225 Tm(= )Tj/F15 1 Tf 9.3 0 0 10.1 235.2 225 Tm(n )Tj/F8 1 Tf 11.1 0 0 8 242.9 225 Tm(= )Tj/F20 1 Tf 8.4 0 0 9.4 251 225 Tm(4 )Tj/F6 1 Tf 0.04999 Tc 9.5 0 0 10.1 261.6 225 Tm[(block )-364.9(Davidson )]TJ0.06999 Tc 8.0316 0 Td(method, )Tj0.03999 Tc 4.2947 0 Td(however, )Tj-34.7895 -1.1782 Td(converges )Tj0.04999 Tc 4.8316 0 Td[(considerably )-106(faster )]TJ0.07999 Tc 8.9895 0 Td((about )Tj-0.13 Tc 3.2842 0 Td(34 )Tj0.04999 Tc 1.2105 0 Td(times) )Tj0.06999 Tc 3.1579 0 Td[(than )-35.9(the )-16.5(other )]TJ0.04999 Tc 6.8 0 Td(two?. )Tj/F2 1 Tf 0.03999 Tc 9.6 0 0 9.9 48.2 188.9 Tm(4.2. )Tj9.3 0 0 10.1 68.4 188.9 Tm(Comparison )Tj/F5 1 Tf -0.21001 Tc 7.8 0 0 10.1 122.2 188.9 Tm(of )Tj/F2 1 Tf 0.00999 Tc 9.3 0 0 10.1 133.4 188.9 Tm(block )Tj0.04999 Tc 2.6882 0 Td(Davidson )Tj0.00999 Tc 4.6452 0 Td(and )Tj/F15 1 Tf 0.09999 Tc 8.5 0 0 7.6 220.6 188.9 Tm(Diis )Tj/F2 1 Tf 0.00999 Tc 9.3 0 0 10.1 241.4 188.9 Tm(approaches )Tj/F6 1 Tf 0.06999 Tc 9.5 0 0 10.1 47.8 171.1 Tm(The )Tj0.04999 Tc 2.1158 0 Td(reason )Tj0.06999 Tc 3.3368 0 Td[(for )32.8(the )-16.5(difference )]TJ0.03999 Tc 8.2632 0 Td(in )Tj0.04999 Tc 1.2316 0 Td(convergence )Tj0.03999 Tc 5.9684 0 Td(rates )Tj0.04999 Tc 2.4737 0 Td(between )Tj0.06999 Tc 4.0632 0 Td(the )Tj0.04999 Tc 1.7474 0 Td[(block )-154.4(Davidson )]TJ0.07999 Tc 7.6316 0 Td((BD) )Tj0.09 Tc -36.8105 -1.1881 Td(and )Tj/F12 1 Tf 0.12999 Tc 7.5 0 0 7.5 67.9 159.1 Tm(DIIS )Tj/F6 1 Tf 0.06999 Tc 9.5 0 0 10.1 88.3 159.1 Tm(methods )Tj0 Tc 4.2421 0 Td(is )Tj0.03999 Tc 1.0947 0 Td[(implicit )-109.6(in )]TJ0.04999 Tc 5.0737 0 Td(their )Tj0.03999 Tc 2.4526 0 Td(different )Tj
0.04999 Tc 4.1895 0 Td(structures. )Tj0.06999 Tc 5.2316 0 Td(The )Tj0.09 Tc 7.3 0 0 7.3 320.4 159.1 Tm(BD )Tj0.06999 Tc 9.5 0 0 10.1 335.3 159.1 Tm(method )Tj0.04999 Tc 3.8105 0 Td(chooses )Tj0.07999 Tc 3.8947 0 Td(to )Tj0.09 Tc -37.9263 -1.1584 Td(add )Tj0.06999 Tc 2.0737 0 Td[(many )-114.9((in )]TJ0.07999 Tc 4.5474 0 Td(the )Tj0.04999 Tc 1.821 0 Td(usual )Tj0.12999 Tc 7.6 0 0 7.5 155.5 147.4 Tm(BD )Tj0.06999 Tc 9.5 0 0 10.1 170.6 147.4 Tm(method, )Tj0 Tc 8.6 0 0 10.4 210 147.4 Tm(m )Tj/F8 1 Tf 11.6 0 0 8 220.1 147.4 Tm(= )Tj/F15 1 Tf 0.23 Tc 9.3 0 0 10.6 229.2 147.4 Tm(n) )Tj/F6 1 Tf 0.03999 Tc 9.5 0 0 10.1 242.4 147.4 Tm[(new )-145.1(vectors )]TJ0.07999 Tc 5.7895 0 Td[(to )4.8(the )]TJ0.06999 Tc 3.0737 0 Td(expansion )Tj0.03999 Tc 5.0316 0 Td[(set )-68.5(in )]TJ0.07999 Tc 2.8842 0 Td(one )Tj0.03999 Tc -37.221 -1.1287 Td(iteration. )Tj0.07999 Tc 4.7053 0 Td(The )Tj0.03999 Tc 2.1684 0 Td(benefits )Tj0.04999 Tc 3.9158 0 Td[(this )-149.8(provides )]TJ0.06999 Tc 6.3895 0 Td[(are )-101.7((i) )]TJ0.04999 Tc 3.3684 0 Td(faster )Tj0.10999 Tc 2.9474 0 Td(or )Tj0.03999 Tc 1.4211 0 Td(even )Tj0.06999 Tc 2.4947 0 Td(much )Tj0.04999 Tc 2.9368 0 Td[(faster )-137(convergence )]TJ0.07999 Tc -30.3684 -1.2079 Td(than )Tj0.04999 Tc 2.2947 0 Td(the )Tj0.12999 Tc 7.6 0 0 7.1 85.9 123.8 Tm(DIIS )Tj0.07999 Tc 9.5 0 0 10.1 105.8 123.8 Tm(or )Tj0.04999 Tc 1.221 0 Td(unblocked )Tj/F5 1 Tf 0.20999 Tc 10 0 0 10.5 163even loop. The drawback of the 

BD 

method is most pronounced, however, when the ‘small’ matrix dimension No is relatively 

t It would have converged four times faster (because nt = 4) except that one of the added vectors had a 
post Gram-Schmidt norm E of <IO- ’  (our threshold for acceptance) and so was discarded. 
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large. I t  is that the size of the expansion set Hamiltonian E increases by m with each 
iteration-(No+ m )  square after the first iteration, etc. If m - n and n - No (cases of 
typical physical interest) the time spent in the Choleski-Householder operations grows 
rapidly. If the number of new vectors added to the expansion set per iteration is 
reduced below n, however, the convergence rate is generally reduced accordingly. 

The great virtue of the D I I S  procedure is that, after the zeroth iteration diagonalisa- 
tion of the small H,, problem, it need never diagonalise a matrix larger than the maximum 
number of iterations, typically s 10. Its drawback is that it is in essence a sequential 
process: for each eigenvector to be refined, the full Hamiltonian (and overlap matrix, 
if present) must be read in one row at a time?. The discussion of computation time 
scaling, in which the true benefits of the DIIS method are demonstrated, is postponed 
to § 5 .  

4.3. Convergence rates f o r  a complex Hermitian matrix 

It may be objected that the modified Nesbet matrix of figure 1 is rather artificial; we 
consider next the numerical results for a 181 x 181 complex Hermitian Hamiltonian 
matrix describing slightly expanded ZnSe, at the r point of the Brillouin zone, within 
a plane wave basis ( S  = I ) .  The matrix elements are computed using the pseudopoten- 
tial parametrisation: of Louie et a1 (1977) and were written into external files from 
which they were read, as usual, one row at a time. This Hamiltonian is fairly typical 
in both form and  numerical content of those encountered in band structure calculations. 
It presents the added difficulty, typical of solid-state problems, that many of the 
eigenvalues are degenerate; the exact level sequence is shown on the right-hand side 
of figure 3, to be  discussed later. 

The iteration histories for the lowest eigenvalue at r for six different methods are 
shown in figure 2. Here No = 15 was selected because this was the smallest set of the 
plane waves for the ZnSe structure for which the eigenvalue structure of the lowest 
eight levels of H was preserved. The structure of the Hamiltonian here is sufficiently 
well behaved that all methods used converged, albeit some better than others. 

Once again there is a clear division between the more sophisticated basis expansion 
techniques: block Davidson (curve A), Davidson (curve B) and  DIIS (curve C)  and 
the simple iterative methods (curves D, E and  F). This time, however, the presence 
of degeneracy enormously reduces the factor by which the block Davidson (here, 
m = n = 8) converges faster than the DIIS and regular Davidson methods. As before, 
D I I S  and regular Davidson methods converge at about the same rate, as the parallelism 
of curves B and C indicate. 

4.4. Complex Hermitian matrix: Lowdin method 

Before turning to the computation time discussion, we briefly remark on the inadequacy 

+To  reduce input/output operations, one could easily 'block' the D I I S  step, so that m eigenvalues and 
eigenvectors were refined simultaneously at the expense of increased central memory storage. The residual 
for each eigenvalue, however, would converge as if  it were being refined independently of the other ( m  - 1 ) .  

One may also exploit the Hermiticity of H and S by reading only up to and including the diagonal of 
H and S :  see Shavitt (1970). 
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lterotion number 

Figure 2. Iteration histories for the complex Hermitian ZnSe matrix: A, block Davidson 
( m  = n = 8 ) ;  B, Davidson; C, D I I S ;  D, simple iteration using the D I I S  complete set equation 
( 3 . 1 ) ;  E, our version of the unsymmetric Lanczos method (equation (2.12)); F, simple 
iteration using the Nesbet complete set equation (2 .13) .  

of the well known Lowdin perturbation scheme (see § 2) .  In figure 3 we show, for 
fixed ‘small” matrix dimension No=9,  the eigenvalues which result from the DIIS 

method (or, in fact, any method which gives correct eigenvalues) and  the Lowdin 
perturbation calculation (using the eigenvalues of Ho in equation (2.17)) as one 
increases the size N of the large matrix from 9 to 181 (the full reference Hamiltonian 
described above). Curves belonging to the same multiplet (indicated on the right-hand 
margin of the figure) are connected with braces?. It is clear that for the valence band 
(the lowest two multiplets, of degeneracy 1 and  3, respectively) the Lowdin perturbation 

I- I 

I l , l , l , l , l , l , l , l r l ,  

0 40 80 120 160 2 00 
Size o f  large matrix, N 

Figure 3. Comparison of Lowdin (- - - )  and D I I S  (-) convergence for fixed N0=9 as 
a function of N .  

+ The pathology for D I I S  and the Lowdin method for the highest eigenvalues shown (i.e. complete omission 
of the second level from the top) is a manifestation of the inadequacy of No = 9 in representing the lowest 
six multiplets of the 181 x 181 problem. 
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method gives results which are convergent, but wrong: the valence band is not described 
by the eigenvalues of Ha used in equation (2.17). By contrast, the lowest two eigenvalues 
of the conduction band (also of degeneracy 1 and 3, respectively) found by the Lowdin 
method are quite close to the exact values, since free-electron conduction band levels 
are frequently less perturbed by the crystal potential. 

4.5. Computation time considerations and constraints 

As argued in 9: 4.2, the standard block Davidson method rapidly becomes unwieldy if 
(a) No>> I ,  so that the starting matrix Ha is already large enough to make its Choleski- 
Householder diagonalisation time (- N i )  a significant constraint, and/or  if (b) many 
new vectors are added to 
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Figure 4. Block 
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1 I 1 I 1 P I\ 
0 2 4 6 8 1 

I terat ion number 

Figure 5. Dependence of iteration hisyory on small matrix dimension No for 181 X 181 
complex Hermitian matrix. Values of No: A, I ;  W, 9 ;  0, 15; e, 27;  A ,  5 1 :  0, 65:  0. 113. 

n eigenvalues of H, in order not to waste time on level crossings and  eigenvalue sorts; 
( b )  pick the smallest No consistent with ( a )  to minimise time spent in Choleski- 
Householder diagonalisation of Ho. 

The DIIS procedure would seem to be most valuable under the following circum- 
stances: ( i)  the size of the ‘small’ matrix, No, is itself large enough so that the time 
spent per iteration for the other efficient methods (e.g. the Davidson methods) becomes 
unwieldy, and/or  (ii) there is significant degeneracy in the level structure of the 
eigenvalues sought (which often confuses or slows down competing methods). 

The explicit sequence of steps in the DIIS procedure is given in the appendix. 

6. Summary and conclusions 

We have presented above a description of a new iterative method for diagonalising 
very large matrices. The structure and philosophy of the method were compared with 
other currently used methods ; we have displayed numerical comparisons for two rather 
different test matrices which illustrate the strengths and  weaknesses of the new and  
older methods, both in terms of convergence rates and  computation times (within a 
simple model). A brief description of its implementation was given with suggestions 
for the choice of convergence and other parameters. 

The new R M M - D I I S  method has already been used successfully for a large number 
of electronic structure problems (e.g. Bendt and Zunger 1982c, Jaffe and Zunger 1983). 
It is efficient both in terms of computation time and  central memory storage require- 
ments, and  holds the promise of pushing back a number of obstacles in the path of 
the calculation of, for example, the electronic structure of complex crystalline and  
amorphous materials. Subject to the constraint that one needs to provide reasonable 
input guesses for eigenvalues and eigenvectors, it may help remove the great premium 
which has customarily been placed on the choice 
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