A. Fazzio and Alex Zunger

Solar Energy Research Institute, Golden, Colorado, 80401

(Received 15 May 1984 by A. A. Maradudin)

A new theoretical approach to the multiplet structure of localized states in solids is applied to the Mott insulators NiO, CoO, and MnO. This method circumvents the major approximations underlying the conven-

Racah parameter A is allowed to depend on the one-electron configurations and the armstal-field parameter. incorpora

Analysis of the observed optical spectra of NiO, CoO, and MnO in light of this approach produces (i) an excellent fit to the spectra and new assignments for some of the transitions, (ii) the values of the meanfield parameters for these materials, (iii) a direct measure for the

analysis of the optical transitions above the interband onset.

I. INTRODUCTON

The optical, magnetic and electronic properties of 3d transition metal monoxides present a series of exceptions to many of the rules estabb....

periodic crystalline environment as a weak perturbation on the free-ion multiplet structures. The relationship between these approaches and the content of electronic band structure calculations

conventional band theory, 4-6 as they are usually predicted to be metals above the Neel temperature (e.g., CoO), or narrow gap semiconductors (e.g., NiO, MnO) with partially occupied d-bands, whereas in fact, with the exceptions of VO and TiO, they

and above the Neel temperature. While in such algy - the grant the grant the grant the grant - 3 - - - -

such as crystal-field splitting and covalency, that are extracted from phenomenological multiplet theories¹¹ (e.g., the Tanabe-Sugano approach¹²) bear only a loose relationship to the content of electronic structure calculations. Self-consistent can field (opace and opin soutsisted)

structure calculations aim at solving the \hat{H}_0 + $\langle \hat{H}_1 \rangle$

 $n_1 - \langle n_1 \rangle$, separating thereby mean-field $\langle n_0 + \langle n_1 \rangle \rangle$

from many-electron multiplet corrections

 $(\hat{H}_1 - \langle \hat{H}_1 \rangle)$, standard multiplet approaches¹² have

parametrized directly the $\hat{\mathtt{H}}_{0}$ + $\hat{\mathtt{H}}_{1}$ problem. In so

doing, a number of approximations were postulated

which are not shared by modern electronic structure

calculations, obscuring the comparison between the two. First, the e and t_2 impurity orbitals were

often assumed to share a common radial orbital and

to have a single 1=2 angular component (neglect of

allen and

and C, even small variations in A can significantly

Second, the Racah

differential hybridization).

the one-electron spectra by posturating a tial, and the the colarity-symmetric average of <u>_____</u> -----

properties at threshold. These transitions occur at subband gap energies (hv = 1-4 eV) and are due to internal $d \rightarrow d^*$ excitations within the d states band theory predicts instead nearly vanishing excitation energies for these transitions. Once it is recognized, however, that the Bloch periodicity of the one-electron orbitals (bands) is not mandated by any fundamental physical principle (as opposed to the Bloch periodicity of the total wavefunction), it is possible to identify a symmetry breaking of the one-electron spatial

largely retaining their atomic character with a Wall interation overlan and bones la ligand-field (cluster) approaches¹⁰ that view the

ltor the multiplet structure Figelly where calculations already include some average of

	multiplet corrections (since a totally-symmetric	
UNUT ON UT	Tanabe-Sugano approach ¹² pertains, in principle, to the bare-ion reference system \hat{H}_0 (multiplet effects can enter indirectly through empirical fitting). A method that circumvents these three difficulties is presented here ¹³ and used to analyze the intra-d transitions in MnO, CoO, and NiO.	These elements depend on the 10 independent Coulomb integrals between the 3-fold degenerate t ₂ orbit- als, (ξ,η,ζ) and the 2-fold degenerate e orbitals (ε,θ) . Consider the (unknown) transition-atom-
	The interelectronic interaction H ₁ splits the	that transform in the fimit of a separated crystal like the e and t_2 representations, respectively.
ž. glace		ter correction to the set of the istard outropic
	symmetric (a_1) component of the charge density with its attendant interelectronic interaction $\langle R_1 \rangle$ is retained, such calculations incorporate the corres- ponding average of all single configuration ener-	$(\lambda_t \lambda_e) 1/2$. Here <ee ee> and <tt tt> are interelec- tronic integrals involving the ε, θ and ξ, η, ζ, <u>parture</u> <u>prbitals of the e and t. Mannier local</u> orbitals, respectively, and <dd dd> are atomic interelectronic integrals involving the pure-d</dd dd></tt tt></ee ee>
	calculation is done. This average SC energy E(m,n)	pressed in a standard form 13 in terms of the
; <u> </u>	$\hat{E}(m,n) = \sum_{i=1}^{n} \omega_{i=1}^{E_{i}}(m,n) , \qquad (1)$	ions. Note that the Racab parameter A. which is
	$\mu = \frac{126 + 1}{26 + 1} = \frac{1}{26} = \frac{1}{26}$	In Sys(3), Since the dependence of the mattract
		DEGLECT ** A OF TO ADDROXIMALE IL DV.A ('UDS/ADL
· · ·	the single-configuration energy shift $\Delta E_{SC}^{1}(m,n)$	pressed therefore solely in terms of λ_e , λ_t , and λ_e , λ_t , λ
4-	$\Gamma_{D_{\alpha\alpha}}(m,n) = \hat{E}(m,n) + \Delta E^{\alpha}_{SC}(m,n) + k_{\alpha\alpha}\Delta_{CF}$, (2) where Δ_{CF} is the bare-ion crystal-field splitting, and $k_{\alpha\alpha}$ is an integer, as in the Tanabe-Sugano model. If we measure the average energy of the configurations (m,n) relative to a reference con-	states relative to a free-ion reference system. In this paper we determine these mean-field parameters from the optical spectra of NiO, CoO, and MnO. This provides the experimentally deduced mean-field quantities to be compared with elec- tronic structure calculations. Given these quan- tities, we can further calculate the multiplet
<u></u>	$\hat{E}(m,n) \equiv \hat{E}(m^{\circ},n^{\circ}) + \Delta(m,n;m^{\circ}n^{\circ}) , \qquad (3)$	calculations). This provides bounds to the errors expected from mean field band theory; the differ- ences between the observed excitation energies AF
	$[\Delta(\mathfrak{m},\mathfrak{n};\mathfrak{m}^{O}\mathfrak{n}^{O}) + k_{\alpha\alpha}\Delta_{CF}] . $ (4)	could legitimately reproduce. This approach has been used successfully for 3d impurities in semi- conductors. ¹³
<u>p</u>	The term in brackets in Eq.(4) is the effective crystal-field splitting $\Delta_{eff}(m,n)$ and represents the separation between the total energies of the configuration (m,n) and $(m^{\circ}n^{\circ})$, including both	III. INTRA-d TRANSITION The band structure of transition metal monox- ides ⁴⁻⁶ shows an occupied oxygen 2p state, a par-
	gies $E_T(m,n) - E_T(m^0,n^0)$ of MF calculations for the two configurations. The diagonal and nondiagonal elements of the interaction matrices are hence given, respectively, as	properties of transition metal oxides are devoted to the transitions between the oxygen 2p state and the metal 3d, 4s, and 4p states. The optical tran- sitions at subband gap energies are identi-

THECH

V

סודי

TN

ODETO

CDEODE

fied^{11,16} as intra-d excitations, whereas the transitions above E_g are the inter-band transitions. We will discuss first the $d^n \rightarrow d^{n*}$ transitions below the onset of the interband spectra.

obtained for the orbital deformation parameters λ_e and λ_t . We note that the effective crystal-field energies deduced from experiment through the Tanabe-Sugano approach are systematically bigher.

Table-I Excitation energies for CoO and NiO. We show the experimental^{8,9} (exptl.) excitation energies ΔE , the fitted results from the present analysis, together with the many-electron component ΔE_{MC} . For comparison, we give the fitted results obtained from a traditional Tanabe-Sugano (TS) analysis.

	Cobalt Ox	ide			Nickel	Oxide	
ΔE (Exptl.)	Present Ana ΔE (fit)	lysis ∆E _{MC}	TS Analysis (a)	∆E (Expt1.	Present ΔE) (fit)	Analysis ^{AE} MC	TS Analysis (b)
 0.9, 1.033	$\begin{cases} 0.93(^{2}E) \\ 1.11(^{4}T_{2}) \\ \ddots \\ $	-1.67 -0.38	1.033(⁴ T ₂)	1.13 1.75	$1.17(^{3}T_{2})$ $1.75(^{3}T_{1})$	-0.42 -0.24	1.13(³ T ₂) 1.62(¹ E)
2.026	$2.01({}^{4}A_{2})$	-0.52	$1.972(^{2}T_{1})$	2.75	2.70($^{1}T_{2}$)	-1.95	
2.053	2.08(² T ₂)	-2.09	$2.054(^{2}T_{2})$		(2 85(¹ A)	-2 95	
2.137	$2.23(^{2}A_{1})$	-1.49	$2.201(^{4}A_{2})$	2.95	$(2.96(^{3}T_{1}))$	-2.08	
2.26, 2.33	$2.31(^{4}T_{1})$	-1.57	$2.30(^{4}T_{1})$	3.25	$3.24(^{1}T_{1})$	-2.47	
2.50, 2.56	2.43($^{2}T_{1}$)	-2.44	2.659($^{2}T_{1}$)	3.52	3.52(¹ E)	-2.01	
2.605	$2.60(^{2}T_{1})$	-1.86	2.803(² A ₁)				

(a) Ref. 8; (b) Ref. 9

tion spectra of NiO and CoO using the experimental data of Ref. 9 and 8, respectively. We assume ground states of ${}^{3}A$, ${}^{4}T$, and ${}^{6}A$, commetrics for

Table-II Values obtained for the crystal-field energies (eV) through different approaches. λ_e and

	· · · · · · · · · · · · · · · · · · ·	
.	agreement between our results and the experimental	
	assigned to any recognizable intrinsic transition	
	Our interpretation of several of the transi-	Co0 1.168 ^d 0.691 ^e 0.762 ^c 0.743 0.970 0.837
	tions differs from Tanabe-Sugano-type assignments.	
	whereas Newman and Cherenko ⁹ deduced an ¹ E final state for this line; the line at 2.96 eV according to our results involves two states ${}^{3}T_{1}$ and ${}^{1}A_{1}$. In CoO the ² E state appears close to the ${}^{4}T_{2}$ state (both states are in the region 0.9-1.033 eV, rather lower than the assignment obtained by Pratt and Coelho ⁸). For MnO there are only three observed lines, which we assign to the transition ${}^{6}A_{1} \rightarrow {}^{4}T_{1}$, ${}^{4}T_{2}$, and ⁴ E in agreement with Pratt and Coelho. ⁸ Note that for MnO, as discussed previously for impurities in semiconductors, 13 the degeneracy of the ${}^{4}C_{2}$ and ${}^{4}E$ bares is lifted rhrough the autor	(a) Ref. 9, (b) Ref. 10, (c) Ref. 6, (d) Ref. 8, (e) Ref. 17 where $\lambda_e \approx \lambda_t$ and only a small number of transi- tions exist, the value of Δ_{eff} is very close to the Δ_{CF} from Ref. 8. Although Δ_{eff} corresponds to differences in total energies, we give in Table II, as estimates, the results inferred from the single- particle energies of band and cluster calculations. Clearly, for NiO and CoO the present analysis re
	ent contributions from e_g and t_{2g} orbitals. This effect does not occur in the Tanabe-Sugano theory,	moves the hitherto unexplained discrepancies between electronic structure calculations and ex-
	where these states are always degenerate. The values for the effective crystal-field energies obtained from different theories ^{6 10} 18	the three oxides are such that $\lambda_e > \lambda_t$, showing that the e states are more localized. This unusual

	the <u>stable</u> aniferromagnetic configuration ("AFII") the e band is actually narrower than the t_2 band due to absence of intra-sublattice ddσ coupling in the former case. Spin-unpolarized calculations ⁶ or cluster calculations ¹⁰ omitting metal-metal	2 $[\Delta_{eff}(d^7) \approx 2\Delta_{eff}(d^8)$, see for example $Co(d^7) \rightarrow Co(d^6)$ with 6C1 ⁻ , 6B ⁻ or 6F ⁻ ligands in H ₂ O environment ²⁰]. In our case we indeed find $\Delta_{eff}(d^7)/\Delta_{eff}(d^8) \approx 1.95$. We hence conclude that the onset of the transition $d^8 \rightarrow d^7s$ indeed occurs
Й Т Т,		
	multiplet correction energies [sum of $\Delta E_{SC} + \Delta E_{CM}$, c.f. Eg. (5)] left out of spin-restricted MF elec- tronic structure calculations (ΔE_{MC} in Table I). Note that all ΔE_{MC} are substantial on the scale of the band gap. For the ground states in NiO (${}^{3}A_{2}$), CoO(${}^{4}T_{1}$) and MnO (${}^{6}A_{1}$) we find large many-electron corrections: -1.33, -1.93, and -4.95 eV, respec- tively. This multiplet energy is a major contribu- ting factor to the binding energy, often	Fig. 1 our, results for the energy states involved in these $d \rightarrow d$ transitions. The transition to $\boxed{\begin{array}{c} \textbf{NiO} \\ \textbf{9.0} \\ \textbf{8.0} \\ \textbf{8.0} \\ \textbf{5} \\ \textbf{7.0} \end{array}} \xrightarrow{2_{T_2}(a^3t^4)}{4_{A_2}(a^4t^3)}$
,		
	understand understand (1909) and	
	between ground and excited states a substantial change in the MC energies is involved. For MnO, the transition to the first excited state ${}^{4}T_{1}$ (with predominant configuration $e^{1}t^{+}$) involves a	$0.0^{2} \xrightarrow{4.3 \text{ eV}} d^{8}$
	correction comes from exchange energy. But in NiO and CoO we have transitions that conserve spin, but nevertheless they show large changes in multiplet energy. For example, in CoO the transition $\frac{4}{T} \left(e^{2}t^{5}\right) \rightarrow \frac{4}{T} \left(e^{3}t^{4}\right)$ involves a change in MC of	Figure 1 Calculated multiplet structure for d ⁸ - d ⁷ transitions in NiO.
1	THE FAT STATE WITH THE EVENTS CONTRACTOR	DEGAUMIDADILY 2 002000 OF LOG GOODAFIAD OF FOO 0-
	IV. ABSORTHON EDGE In the region from 4 to 8 eV, Powell and <u>Spicer¹⁶ detected is_the reflectivity spectra a</u> series of transitions in NiO and CoO which have or 2p→3d transitions. A detailed analysis of the	latter with higher transition probability. Note that the ${}^{4}T_{2}$ state originates from the pure configuration $a^{3}t^{4}$ upped the ${}^{3}t^{4}$ transition involves the competitor channel that the originates closely spaced states: ${}^{2}T_{13}$ (mainly $e^{2}t^{3}$),
	be discarded. We next examine this possibility in light of our analysis. <u>1.NiO.</u> <u>The lines thet according to Powell and Spic-</u>	has an admixture from the configuration e^2t^5 which increases the transition probability, although by a small amount, since Δ_{eff} is fairly large.
	eV. If we assume that the onset is at 4.3 eV and	ly, as determined by electroreflectance tech-
	occur at $E_1-4.3 = 0.6$, 1.8 , 2.9 and 4.2 eV, respectively. Using the Ni free-ion values for the Racah parameters B_0 and C_0 and fitting the spectra, we find the following values of the mean- field parameters: $1.38 < \Delta_{eff} < 1.48$ eV; $\lambda_e =$ 0.972, and $\lambda_t = 0.889$ (ranges correspond to experi pental uncertainties). Comparing these values with	value of Δ_{eff} is doubled for co-and FM , (1.49) and 2.06 eV, respectively). Using the same orbital deformation parameters λ_e , λ_t obtained for the 24 oxidation state of the ions, we calculate the spec- tra and analyze it in terms of the available exper- imental results as well as compare it with the model proposed by Brandow.
	(Table II), we see that Δ_{aff} is increased by a	by Messick et al., ²¹ who suggest that the transi-
	factor of about 2, whereas λ_e^{fill} and λ_t increase only slightly. ⁷ One expects the average effective crystal-field energy to increase by about a factor	tion ${}^{6}A_{1}(d^{5}) \rightarrow {}^{5}E(d^{4}s^{1})$ occurs at 4.6 eV and the transition ${}^{6}A_{1}(d^{5}) \rightarrow {}^{5}T_{1}(d^{4})$ occurs at 5.5 eV. From theoretical considerations, it can be shown

a the transford 1 and 4 and 1 e har

<u>}</u>	that the bearing	water and the second states and	<u> </u>	
	states (2 and 3 units of However, if we consider splitting is approximatel difficult to accept the M tation, in which this dif the expected value. of A.	intensity, respectively). that the ${}^{5}T_{2}-{}^{5}E$ energy y equal to Δ_{eff} , it is essick et al. ²¹ interpre- fference is 1.0 eV, half	(XPS) experiments around 2.0 eV^{22} (Brandow, ³ suggested from the same data ~2.2 eV). The energy difference obtained for the states ${}^{5}T_{2}$ and the first ${}^{3}T_{1}$ in the second group (these should be the two most populated states in the transitions) is 2.0 eV. Our conclusion is similar to that Brandow	
<u></u>				
<u></u>	7 3. 3 ²²¹		A 15 - M - CHECKY SEPARATION. OUT MODEL SIVES	
			to	
	transitions will group in involves the $5T_{-}(t^{4}e^{2})$	two subsets. The first $3_{T_{1}}(t^{5})$ and $3_{T_{2}}(t^{5})$	brandow suggests an energy separation of ~0.2 eV, considerably closer to the one suggested here.	
	states (2.5, 1.0, and 1.0) units of intensity, re-		
	spectively) with the excitation 0.58 eV , and the ${}^{3}\text{T}_{1}$, ${}^{3}\text{E}$, ${}^{3}\text{T}_{2}$, ${}^{3}\text{A}_{2}$, and ${}^{3}\text{T}_{1}$ e	itation energies centered e second formed by the states originating mainly	ACKNOWLEDGEMENT - We thank B. Brandow for very helpful and informative discussions on this subject. This work is supported by the U.S.	
	from the e ^{ft} configuratio	n (1.0, 0.66, 0.5, 0.33,	Department of Energy, under Grant No. DE-ACO2-83-	
(8.3.=			Nundassanda tassus e Davastas I. Nov I 4 - C-	
		Refe	rences	
	1. N. F. Mott, <u>Meta</u> 2. J. B. Goodenough 3. B. H. Brandow, <i>A</i> 4. T. M. Wilson T	al Insulator Transitions (Ta n, Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) ptern. 1. Quantum (Dem. 28	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972).). 269 (1968):135 757 (1970): (1 Appl Phys. 40	
	 N. F. Mott, <u>Meta</u> J. B. Goodenough B. H. Brandow, A T. M. Wilson, Ir 1588 (1969). 	al Insulator Transitions (Ta a, Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) atern. J. Quantum Chem. <u>28</u> ,	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972).). 269 (1968); <u>35</u> , 757 (1970); J. Appl. Phys. <u>40</u> ,	
	 N. F. Mott, <u>Meta</u> J. B. Goodenough B. H. Brandow, A T. M. Wilson, Ir 1588 (1969). A. B. Kunz, Inte 	al Insulator Transitions (Ta a, Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) atern. J. Quantum Chem. <u>25</u> , 4	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>35</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981).	
	 N. F. Mott, <u>Meta</u> J. B. Goodenough B. H. Brandow, A T. M. Wilson, Ir 1588 (1969). A. B. Kunz, Inte L. F. Mattheiss, 	al Insulator Transitions (Ta a, Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) atern. J. Quantum Chem. <u>25</u> , ern. J. Quantum Chem. <u>155</u> , 4 , Phys. Rev. B <u>5</u> , 290, <u>306</u> (aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>35</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981). (1972), <u>1514 5</u> 306 (1972).	
	 N. F. Mott, Meta J. B. Goodenough B. H. Brandow, A T. M. Wilson, In 1588 (1969). A. B. Kunz, Inte L. F. Mattheiss, N. F. Mott, Proc 	al Insulator Transitions (Ta a, Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) itern. J. Quantum Chem. <u>25</u> , ern. J. Quantum Chem. <u>155</u> , 4 , Phys. Rev. B <u>5</u> , 290, 306 (c. Phys. Soc. (London) A <u>62</u> B. Coclber Phys. Rev. <u>116</u>	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>35</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981). (1972), <u>1bid 5</u> 306 (1972). , 416 (1949).	
	 N. F. Mott, Meta J. B. Goodenough B. H. Brandow, A T. M. Wilson, In 1588 (1969). A. B. Kunz, Inte L. F. Mattheiss, N. F. Mott, Proc G. W. Pratt and R. Newman and R. 	al Insulator Transitions (Ta a, Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) itern. J. Quantum Chem. <u>25</u> , ern. J. Quantum Chem. <u>155</u> , 4 , Phys. Rev. B <u>5</u> , 290, 306 (c. Phys. Soc. (London) A <u>62</u> R. Coelho, Phys. Rev. <u>116</u> , M. Cherenko, Phys. Rev. <u>116</u>	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>355</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981). (1972), <u>1bid 5</u> 306 (1972). , 416 (1949). 281 (1959).	
	 N. F. Mott, Meta J. B. Goodenough B. H. Brandow, A T. M. Wilson, In 1588 (1969). A. B. Kunz, Inte L. F. Mattheiss, N. F. Mott, Proc G. W. Pratt and R. Newman and R. P. S. Bagus and 	al Insulator Transitions (Ta a, Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) itern. J. Quantum Chem. <u>25</u> , ern. J. Quantum Chem. <u>155</u> , 4 , Phys. Rev. B <u>5</u> , 290, <u>306</u> (c. Phys. Soc. (London) A <u>62</u> . R. Coelho, Phys. Rev. <u>116</u> , . M. Cherenko, Phys. Rev. <u>11</u> U. Wahlgren, Molec. Phys. <u>1</u>	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>355</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981). (1972), <u>1bid 5</u> 306 (1972). , 416 (1949). 281 (1959). <u>14</u> , 1507 (1959). <u>33</u> , 641 (1977).	
	 N. F. Mott, <u>Meta</u> J. B. Goodenough B. H. Brandow, A T. M. Wilson, In 1588 (1969). A. B. Kunz, Inte L. F. Mattheiss, N. F. Mott, Proc G. W. Pratt and R. Newman and R. P. S. Bagus and D. Adler and J. 	al Insulator Transitions (Ta a, Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) itern. J. Quantum Chem. <u>25</u> , ern. J. Quantum Chem. <u>155</u> , 4 , Phys. Rev. B <u>5</u> , 290, <u>306</u> (c. Phys. Soc. (London) A <u>62</u> . R. Coelho, Phys. Rev. <u>116</u> , . M. Cherenko, Phys. Rev. <u>116</u> , U. Wahlgren, Molec. Phys. <u>7</u> Feinleib, Phys. Rev. B 2, <u>7</u>	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>335</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981). (1972), <u>1bid 5</u> 306 (1972). , 416 (1949). 281 (1959). 14, 1507 (1959). 33, 641 (1977). 3112 (1970).	
	 N. F. Mott, <u>Meta</u> J. B. Goodenough B. H. Brandow, A T. M. Wilson, In 1588 (1969). A. B. Kunz, Inte L. F. Mattheiss, N. F. Mott, Proc G. W. Pratt and R. Newman and R. P. S. Bagus and D. Adler and J. S. Sugano, Y. Ta 	al Insulator Transitions (Ta a, Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) itern. J. Quantum Chem. <u>25</u> , ern. J. Quantum Chem. <u>155</u> , 4 , Phys. Rev. B <u>5</u> , 290, 306 (c. Phys. Soc. (London) A <u>62</u> . R. Coelho, Phys. Rev. <u>116</u> , . M. Cherenko, Phys. Rev. <u>116</u> , . M. Cherenko, Phys. Rev. <u>116</u> , U. Wahlgren, Molec. Phys. <u>7</u> Feinleib, Phys. Rev. B <u>2</u> , anabe, and H. Kamimura, <u>Mula</u>	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>35</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981). (1972), <u>ibid 5</u> 306 (1972). , 416 (1949). 281 (1959). 14, 1507 (1959). 33, 641 (1977). 3112 (1970). tiplet of Transition-Metal Ions in Crystal,	
	 N. F. Mott, <u>Meta</u> J. B. Goodenough B. H. Brandow, A T. M. Wilson, In 1588 (1969). A. B. Kunz, Inte L. F. Mattheiss, N. F. Mott, Proc G. W. Pratt and R. Newman and R. P. S. Bagus and D. Adler and J. S. Sugano, Y. Ta 	al Insulator Transitions (Ta a), Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) a)tern. J. Quantum Chem. <u>25</u> , ern. J. Quantum Chem. <u>155</u> , 4 b), Phys. Rev. B <u>5</u> , 290, 306 (c). Phys. Soc. (London) A <u>62</u> . R. Coelho, Phys. Rev. <u>116</u> , b). Cherenko, Phys. Rev. <u>116</u> , b). Cherenko, Phys. Rev. <u>116</u> , c). M. Cherenko, Phys. Rev. <u>116</u> , b). Wahlgren, Molec. Phys. <u>7</u> Feinleib, Phys. Rev. B <u>2</u> , anabe, and H. Kamimura, <u>Multiple</u>	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>335</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981). (1972), <u>ibid 5</u> 306 (1972). , 416 (1949). 281 (1959). 14, 1507 (1959). 33, 641 (1977). 3112 (1970). tiplet of Transition-Metal Ions in Crystal,	
<u></u>	 N. F. Mott, <u>Meta</u> J. B. Goodenough B. H. Brandow, A T. M. Wilson, In 1588 (1969). A. B. Kunz, Inte L. F. Mattheiss, N. F. Mott, Proc G. W. Pratt and R. Newman and R. P. S. Bagus and D. Adler and J. S. Sugano, Y. Ta 	al Insulator Transitions (Ta), Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) itern. J. Quantum Chem. <u>25</u> , ern. J. Quantum Chem. <u>155</u> , 4 , Phys. Rev. B <u>5</u> , 290, 306 (c. Phys. Soc. (London) A <u>62</u> R. Coelho, Phys. Rev. <u>116</u> , . M. Cherenko, Phys. Rev. <u>116</u> , . M. Cherenko, Phys. Rev. <u>117</u> U. Wahlgren, Molec. Phys. <u>37</u> Feinleib, Phys. Rev. B <u>2</u> , <u>37</u> anabe, and H. Kamimura, <u>Multa</u> N. <u>1970</u>	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>35</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981). (1972), <u>ibid 5</u> 306 (1972). , 416 (1949). 281 (1959). 14, 1507 (1959). 33, 641 (1977). 3112 (1970). tiplet of Transition-Metal Ions in Crystal,	
	 N. F. Mott, <u>Meta</u> J. B. Goodenough B. H. Brandow, A T. M. Wilson, In 1588 (1969). A. B. Kunz, Inte L. F. Mattheiss, N. F. Mott, Proc G. W. Pratt and R. Newman and R. P. S. Bagus and D. Adler and J. S. Sugano, Y. Ta 	al Insulator Transitions (Ta), Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) itern. J. Quantum Chem. <u>25</u> , ern. J. Quantum Chem. <u>155</u> , 4 , Phys. Rev. B <u>5</u> , 290, 306 (2. Phys. Soc. (London) A <u>62</u> R. Coelho, Phys. Rev. <u>116</u> , . M. Cherenko, Phys. Rev. <u>116</u> , . M. Cherenko, Phys. Rev. <u>117</u> U. Wahlgren, Molec. Phys. <u>35</u> Feinleib, Phys. Rev. B <u>2</u> , <u>35</u> anabe, and H. Kamimura, <u>Mult</u> N. <u>1970</u>	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>35</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981). (1972), <u>ibid 5</u> 306 (1972). , 416 (1949). 281 (1959). 14, 1507 (1959). 33, 641 (1977). 3112 (1970). tiplet of Transition-Metal Ions in Crystal,	
	 N. F. Mott, <u>Meta</u> J. B. Goodenough B. H. Brandow, A T. M. Wilson, In 1588 (1969). A. B. Kunz, Inte L. F. Mattheiss, N. F. Mott, Proc G. W. Pratt and R. Newman and R. P. S. Bagus and D. Adler and J. S. Sugano, Y. Ta 	al Insulator Transitions (Ta), Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) itern. J. Quantum Chem. <u>25</u> , ern. J. Quantum Chem. <u>155</u> , 4 , Phys. Rev. B <u>5</u> , 290, 306 (2. Phys. Soc. (London) A <u>62</u> . R. Coelho, Phys. Rev. <u>116</u> , . M. Cherenko, Phys. Rev. <u>116</u> , . M. Cherenko, Phys. Rev. <u>117</u> U. Wahlgren, Molec. Phys. <u>35</u> Feinleib, Phys. Rev. B <u>2</u> , <u>35</u> anabe, and H. Kamimura, <u>Mult</u> N. <u>1970</u> and J. F. Dimmock, rnys. Rev. d W. E. Snicer, Phys. Rev.	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>35</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981). (1972), <u>ibid 5</u> 306 (1972). , 416 (1949). 281 (1959). 14, 1507 (1959). 33, 641 (1977). 3112 (1970). tiplet of Transition-Metal Ions in Crystal, ev. <u>B 20</u> , 1527 (1979). 3.2, 2182 (1970).	
	 N. F. Mott, <u>Meta</u> J. B. Goodenough B. H. Brandow, A T. M. Wilson, In 1588 (1969). A. B. Kunz, Inte L. F. Mattheiss, N. F. Mott, Proc G. W. Pratt and R. Newman and R. P. S. Bagus and D. Adler and J. S. Sugano, Y. Ta 	al Insulator Transitions (Ta), Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) itern. J. Quantum Chem. <u>25</u> , ern. J. Quantum Chem. <u>155</u> , 4 , Phys. Rev. B <u>5</u> , 290, 306 (2. Phys. Soc. (London) A <u>62</u> . R. Coelho, Phys. Rev. <u>116</u> , . M. Cherenko, Phys. Rev. <u>116</u> , . M. Cherenko, Phys. Rev. <u>117</u> U. Wahlgren, Molec. Phys. <u>35</u> Feinleib, Phys. Rev. B <u>2</u> , <u>35</u> reinleib, Phys. Rev. B <u>2</u> , <u>35</u> anabe, and H. Kamimura, <u>Mult</u> N. <u>1970</u> and J. F. Dimmock, rnys. Rev. Here d W. E. Spicer, Phys. Rev. Fig.	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>35</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981). (1972), <u>ibid 5</u> 306 (1972). , 416 (1949). 281 (1959). 14, 1507 (1959). 33, 641 (1977). 3112 (1970). tiplet of Transition-Metal Ions in Crystal, ev. <u>B 20</u> , 1527 (1979). 3 2, 2182 (1970).	
	 N. F. Mott, <u>Meta</u> J. B. Goodenough B. H. Brandow, A T. M. Wilson, In 1588 (1969). A. B. Kunz, Inte L. F. Mattheiss, N. F. Mott, Proc G. W. Pratt and R. Newman and R. P. S. Bagus and D. Adler and J. S. Sugano, Y. Ta 	al Insulator Transitions (Ta), Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) itern. J. Quantum Chem. <u>25</u> , ern. J. Quantum Chem. <u>155</u> , 4 , Phys. Rev. B <u>5</u> , 290, 306 (2. Phys. Soc. (London) A <u>62</u> . R. Coelho, Phys. Rev. <u>116</u> , . M. Cherenko, Phys. Rev. <u>11</u>	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>35</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981). (1972), <u>ibid 5</u> 306 (1972). , 416 (1949). 281 (1959). 14, 1507 (1959). 33, 641 (1977). 3112 (1970). tiplet of Transition-Metal Ions in Crystal, ev. <u>B 20</u> , 1527 (1979). 3 , 2182 (1970). Bug Char Beriokte <u>60</u> <u>82 (1965)</u> 5, 007 (1977).	
	 N. F. Mott, Meta J. B. Goodenough B. H. Brandow, A T. M. Wilson, In 1588 (1969). A. B. Kunz, Inte L. F. Mattheiss, N. F. Mott, Proc G. W. Pratt and R. Newman and R. P. S. Bagus and D. Adler and J. S. Sugano, Y. Ta A. J. Powell and R. J. Powell and T. Oguchi, K. Te Oguchi, A. R. Wi N. J. 19, (1984) 	al Insulator Transitions (Ta), Progress in Solid-State (Adv. in Phys. <u>26</u> , 651 (1977) itern. J. Quantum Chem. <u>25</u> , ern. J. Quantum Chem. <u>155</u> , 4 , Phys. Rev. B <u>5</u> , 290, 306 (2. Phys. Soc. (London) A <u>62</u> , R. Coelho, Phys. Rev. <u>116</u> , M. Cherenko, Phys. Rev. <u>116</u> , M. Cherenko, Phys. Rev. <u>116</u> , J. Wahlgren, Molec. Phys. <u>7</u> Feinleib, Phys. Rev. B <u>2</u> , <u>3</u> anabe, and H. Kamimura, <u>Mult</u> M. <u>1970</u> and J. r. Dimmock, rnys. Rev. H M. E. Spicer, Phys. Rev. H M. E. Spicer, Phys. Rev. H M. S. Spicer, Phys. Rev. H M. S. Spicer, Notes Filler erakura and A. R. Williams, illiams and J. Kübler Techni	aylor and Francis LED, London, 1974). Chemistry, <u>5</u> 145 (1972). 269 (1968); <u>335</u> , 757 (1970); J. Appl. Phys. <u>40</u> , 487 (1981); J. Phys. C <u>14</u> , L455 (1981). (1972), <u>1bid 5</u> 306 (1972). , 416 (1949). 281 (1959). 14, 1507 (1959). 33, 641 (1977). 3112 (1970). tiplet of Transition-Metal Ions in Crystal, EV. D <u>20</u> , 1527 (1979). 3 2, 2182 (1970). Phys. Rev. B <u>28</u> 6443 (1983); K. Terakura, T. ical Report of ISSP, University of Tokyo - Ser. A	

22. D. E. Eastman and J. L. Freeouf, Phys. Rev. Lett. 34, 395 (1975).