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Quasiband crystal-field
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I. INTRODUCTION

Substantial progress has been made over the past
few years in advancing the
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II. STATEMENT OF THE PROBLEM

Our description of the problem addressed in this
paper consists of (1) a formulation of the host- (H)
crystal problem, (2) the definition of the potential
perturbation associated with the defected (D) crys-
tal, and (3) the statement of the defect problem. In
this section we define the basic quantities appear-
ing in the forthcoming discussions and in the pre-
sentation of our method.

The electronic structure of the ideal host is ex-
pressed in terms of a single-particle equation that
provides the host wave functions PJ~(k, r) and band

penergies eJ(k) for a translationally invariant host-
crystal potential VH(ptr(r)):

[ , V +VH—
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The term e„,[p] is the exchange (with an exchange
coefficient a„) and correlation energy per particle
of the homogeneous electron gas.

Equations (1)—(8) define the electronic structure
of the host crystal; given VH'(r) and N, alone,
one can solve for the self-consistent



850 ULF LINDEFELT AND ALEX ZUNGER 26

that of atomic dimensions. This analysis
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equations:

g [5,,—QG (e;),,-&g, -
l

b, Vl g, &]C~, ——0,

where the



852 ULF LINDEFELT AND ALEX ZUNOER 26

range part of the perturbing potential is frequently
too strong to permit low-order perturbation ap-
proaches based on the host wave functions as
zero-order states. ' '

Most of these difficulties associated with solving
the deep defect problem are overcome by the
Green's-function approach. ' The knowledge of
P;( r ) only in the range where the perturbing po-
tential b, V(r) is nonzero is sufficient [c f E. q. . (18)]
to generate P;(r) everywhere. Consequently, the
energies and wave functions of both localized and
extended states can be found by using the localized
representation in Eq. (16) if the set
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TABLE I. The calculated defect energy levels of a parabolic perturbation potential
EV(r )=K(r —ro) in a silicon free-electron host, comparing the results of the conventional
defect
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(g (r R )
~

~V(» Rt) ~gb(r Rb)&

[cf. Eq. (17a)] involving three-dimensional, nons-

pherical multicentered functions need tomulticentered
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The first to realize that this is, in effect, a gen-
eralized pseudopotential problem was Phillips
who showed that if one orthogonalizes g;(r) to the
ligand orbitals, the crystal-field problem can still
be solved
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method. It was first used in the context of
Green's-function calculations by Lindefelt.

This k-space summation method simplifies the
calculations enormously: Only a small number of
k
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from atomic potentials and if linear mixing ' '

between input and output b, V( r ) is used.
We have overcome this difficulty by using a new

and efficient method developed by Bendt and
Zunger for general self-consistency problems.
This method uses a Newton-Raphson technique
with Jacobian updates. It is far more effective
than potential mixing, ' ' the Pratt scheme,
Kerker's scheme, or Ferriera's accelerator. ' It
enables the efficient self-consistent solution of the
defect problem even with modest computational fa-
cilities. The method is described in Sec.V D.

V. THE PRESENT RESOLUTION OF THE
DIFFICULTIES

We describe in this section our QBCF approach
to resolving the difficulties described in the preced-
ing section. The discussion parallels the structure
of Secs. IVB1—IVB4.

A. The
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tions. The common critique of basis set orthogo-
nalization states that the long-range oscillations
introduced by this procedure can penetrate the
domain of b, V(r) without adding extra variational
flexibility. In the generalized crystal-field repre-
sentation, however, the existence of a physical dis-
tance scale in the problem —the perturbation radius

R,—allows one to overcome this difficulty easily.
The basis Ig&t (r) I is Schmidt orthogonalized
within a sphere of radius R, such that the orthogo-
nalized function vanishes outside R, . All members
of the set that are linearly dependent to within a
prescribed tolerance (i.e., the
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essential for describing transition elements and, at
the same time, results in an involved multiple-
scattering form when an overlapping multicenter
representation is used, becomes diagonal in all but
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in the screening potential [Eqs. (35) and (36)] can
be constructed from any given densities pD(r) and

pH(r), as described in Sec. V B2. A self-consistent
solution to the defect Green's function Eqs. (17)
and (18)
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(33), (35), and (36). The process is iterated until
the



t
TABLE IV. Convergence of the energy e, (in eV) and orbital-density localization q; of

Eq. (44) {in electrons) of the silicon vacancy gap level with respect to the number Mb of
host-crystal bands and the number X~ of atoms in a supercell. Also shown is the smallest
distance d between adjacent vacancies in neighboring supercells. In Eq. (44), R, =4.44 a.u.
(the nearest-neighbor distance). The zero of energy is the valence-band maximum. The
basis set consists of 14 radial Coulombic functions with Z =10 for each of the I com-
ponents used (1=1,2, 3,4). The maximum value q can attain equals the occupation of the t2
level, i.e., 2.0.

Interdefect
distance

d (a.u. ) Atoms/cell

Mb ——10 bands
t2

Mb ——21 bands
t2

q;

Mb ——30 bands
t2

q;

21.8
36.3
50.8
65.3
79.8

54
250
686

1458
2662

1.227
0.906
0.817
0.802
0.798

0.48
0.66
0.66
0.66
0.66
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FIG. 2. Spectral decomposition of the t2 gap-state wave function f; (r) of the silicon vacancy in terms of host-
t2

crystal Bloch wave functions PJ {k,r). The coefficients are given by P; (r)= g.
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1/2

F t(l r ~)= a ' (ar)
2p(@+1)!

ar 121—&I + & (ar ) (46)

where a=2Z* jp and Z* is the effective nuclear
charge.

The two types of basis sets have very different
spatial properties (e.g. , casp behavior and localiza-
tion), yet Fig. 3 shows that the energy levels of the
t2 and a~ vacancy levels obtained with these basis
functions agree to within 0.01 eV. Notice that we
use the same number N of radial orbitals for each
of the angular-momentum components of the wave
function (I=1,2, 3,4 for tz and 1=0,3, 4 for a&).
This basis has therefore an enormous
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eludes the lowest nonspherical components even
though b, V(r) and bp(r) are nearly spherically
symmetric. The fact that only the first few I com-
ponents of the wave function need to be retained in
a Green's-function approach is illustrated in Table
VII. It illustrates the convergence of the energies
and orbital-density localization parameters of the
t2 and a ~ vacancy levels with respect to the num-
ber of angular-momentum components L ",'„ in-
cluded in the wave-function expansion of Eq. (28).
If one restricts the wave-function representation to
the single lowest l component (i.e., s orbitals for
the a

&
states and p orbitals for the t2 state), the re-

sulting
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This describes the three energy levels within a re-
markable accuracy of 0.3% and correctly
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FIG. 12. Quasiband structure for substitutional Cu in
silicon. All the band-structure bands below 2 Ry are in-

cluded. Five local quasibands, constructed from the
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essentially passive, a simple, atomic view of this
impurity is likely to be wrong since extensive
charge redistribution and hybridization occurs in
the s-p manifold.
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FIG. 20. Radial densities of the Si:Cu e resonance in
the + (110) directions (a), and the sum of radial densi-

ties for the three components of the t2 resonance, shown
in the + (111)directions (b).

posite sign of the I =1 component in Si:Cu, but the
same sign in the case of silicon vacancy (cf. Fig.
4). The gap state wave function in Si:Cu is hence
distinctly different from the dangling-bond t2 wave
function of the
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potential, 200 sec, and (iii) calculation of all over-

lap integrals and quasibands entering the Green's
function, 300 sec. (2) Iteration-dependent calcula-
tions, given here per iteration, are (i) calculation of
the potential perturbation from defect wave func-
tion, 45 sec and (ii) the solution of the Green's-
function problem, 110 sec. If we start from an
atomic potential as an initial guess, the Jacobian
update method requires seven iterations to con-
verge to a few mRy accuracy. The calculations
cost is hence 8.6 min for the one-time expense,
plus 18 min
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X;(r)=B;;f;(r)+ Q BJP,(r),
j+i

(A4)

where the coefficients IB1 ] are at this stage arbi-
trary. From Eqs. (Al), (A3), and (A4), one obtains
the CFP that satisfies Eq. (A3) by construction, as:

g BPj(E( ej )P; (r )—
Va ( E )

JAi

B(~f; (r)+ QB,J/J(r)
j+i

(A5)

Notice that any choice of [B;~ I in Eq. (A4) will

provide a solution to Eq. (A3) with the corrmt en-

ergy E; However. , the resulting wave function

X; (r ) may not share the properties of the correct
solution P; (r). Note further that with the CFP of
Eq. (A5) one can solve Eq. (A3) even with a limit-
ed basis set without fearing that the solution E;
will converge to a low-lying ligandlike state ej,
which is the case in the standard
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=e'"'uj(k, r), (83)

where u~(k, r) is periodic with respect to transla-
tions by R&. It can therefore be Fourier-analyzed
as

R

=QF~(k, G)e'
G

and energies [ej9 (k) I requires the diagonalization
of the host-crystal Hamiltonian Ho in the
nonorthogonal basis of band-structure wave func-
tions [P~ ( k, r ) J and local Bloch functions

[XJ( k, r ) ) [Eq. (25)]. This then requires the
evaluation of the matrix elements

(())j~ ( k, r )
~

0
~

P~ (k, r

)

88(XTj
ET
BT
/Xi38 11.3f
106.52760589 Td
(k,k,)Tj
ET
BT
/Xi38 11.32 Tf
122.75 Tf5.622Td
(r))Tj
ET
BT
/Xi38 8.884Tf
10131 Td58958Tf
(P~~O~XTj
ET
BT
/Xi38 11.3f
106588470589 Td
(k,k,)Tj
ET
BT
/Xi38 11.52 Tf
211.83470589 78d
(r))T)TTj
ET
BT
/Xi38 1077 Tf
71.88 Tf5.8896d
(and)Tj
ET
BT
/Xi38 8.63 Tf
15.05 605n155Td
(()TQTj
ET
BT
/Xi38 6..3222f
110.79 605503 7d
(k,k,)Tj
ET
BT
/Xi38 11.32 Tf
17524 78d5503 Td
(req)Tj
ET
BT
/Xi38 8.95 62
101353 Tf5526 Td
(J)~O~XJk,
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S» ——(g, (r)
~

8(r) ~X,(k, r)} .

From Eqs. (27) and (B2) we obtain for the first matrix element in Eq. (C2),

Sq= QB&(k+G)e '"+o"Ki (k+G)i f Fzi(rj)i(
~

i+Ger)8(r)r dr,
N o 0 P (C3)

&( fg,*(r)8(r)fi(r RI)dr —. (C4)

Note that from this equation the advantage of in-
troducing the cut-off function 8(r }becomes ap-
parent: It reduces the number of two-center in-

tegrals that need to be calculated.
The calculation of the integrals in Eq. (C4) in-

volves the standard a-Lowdin expansion. How-
ever, this technique has not been previously gen-
eralized to include the treatment of arbitrary orbi-

where ~ is the displacement
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where the unitary matrix D' ' is the transformation matrix of spherical harmonics in the Condon-Shortley
phase convention under rotation of the Euler angles (a,b,c):

l

Yr (8,$)= g D' ' (a,b, c)YI (O', P') .
m'= —l

(Cl 1)

Furthermore, U'" is the unitary matrix relating spherical and Kubic harmonics of angular-quantum number
I:

l

KP (8,$}= g U'"pgYr (8,$) .
m= —l

(C12)

The Euler angles (a,b, c) in Eqs. (C10) and (Cl 1) correspond to a rotation of the coordinate system at r =0
[the origin of the g, (r } functions] such that the polar axis (z axis) points along the vector R~. The explicit
expression for the D matrices is

;~, ;~,+ ( —1)"[(l+m)!(l —m)!(1+m')!(l —m')!]'
a!(1+m —a.)!(l—m ' —a )!(a+m' —m )!

' 2l —2z—m'+m ' 2sc+m' —m
b bcos—
2

sin—
2

(C13)

where the summation over ~ includes all values
that make the arguments of the factorials non-
negative. Furthermore, Pr (x) are the associated
Legendre polynomials and kl are the spherical
harmonic normalization constants (in the Condon-
Shortly phase convention):

Yr (8,$)=kr~PI (cos8)e', m &0

(8,$)=(—1) Yi '(8,$), m &0
'1/2 ' ' 1/2

( 1)~ 21+1 (1—m)!
4m (l+m )!

(C14)

In deriving these expressions, we have assumed
that the coordinate system at r =R& is related to
the fixed coordinate system at r =0 through a
translation by Rz (i.e., the two-coordinate systems
have the same orientation). Hence, their polar axes
are parallel, but do not generally point along the
direction of R~. The interpretation of the various
factors in Eq. (CS) is then the following: The Q'-
matrix elements to the right of the "transfer in-
tegral" I first express the function fj(p } in Eq.
(C5) at r =R~ in terms of spherical harmonics
and then express this function in a rotated coordi-
nate system whose polar axis is in the direction of
Rz. Then the transfer integral I gives the resulting
function in a rotated coordinate system at r =0,
whose polar axis is also in the direction of Rz.
This integral alone (without the & matrices) is the
only ingredient in the a-expansion technique de-
rived by Lowdin. Finally, the & matrix to the
left of the I gives the function in terms of spheri-

I

cal harmonics in a coordinate system rotated back
to its original orientation and expresses this func-
tion
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full BZ [Eq. (D2)] to sums over the irreducible BZ
(IBZ). The final results of this appendix are given
in Eqs. (D3), (D5), and (D8).

Since the expansion
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tion. In this appendix we derive explicit closed-
form expressions for 5i(

I
r

I
) for Td defects in a

zinc-blende host crystal. The final results of this
appendix are given in Eqs. (E16)—(E20), and
(E26).

1. Charge density of the defected system

Using our expression (29) for the defect wave
functions f (r) in terms of local orbitals, we ob-

tain

8(r —R, )P (r)=QG; (
I
r

I
)E ' (r) . (E2)

l

The charge density within the region defined by R,
for spin o(o = T or g) is

occ da
pD(r)= X X X I

e(r —R, V', (r
i, (o) a A, =l

needs to be valid only in the domain
I
r

I
&

I
R, I,

much like in Eq. (E3). Since the host wave func-
tions are often available as a Fourier series [c.f. Eq.
(82)], one might construct from it a similar
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(E12)

We can make contact with the standard continuum Green s-function formalism by taking 8(r) = 1, S= l.
One then recognizes that the matrix elements B,b of Eq. (El 1) correspond to

EF
B.b = I—m J G'b(e)de,

where Eb is the Fermi energy and that PH(r) of Eq. (E10) corresponds to

PH(r )=2+g, (r
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This involves performing two simple one-dimensional radial integrals, exactly like in atomic calculations.
This procedure was tested successfully on a number of analytically solvable problems.

5. The change in the exchange-correlation potential

The exchange-correlation potential b V"'[pi),pH] is nonlinear with respect to pL) —pH [cf. Eq. (Sb)] and
therefore cannot be evaluated from hp. Instead,
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the full energy scale with an energy mesh that can
resolve any two roots. There exists however a very
elegant algorithm, first used by Van der Avoird
et al. ,

6 for finding the roots of D (e) efficiently.
These authors considered the matrix

applied.
&roof. I.et aj(e) denote the eigenvectors of

Q3(e):

Q3(e)a, (e)=p, (e)a, (e), (F6)

Q2(e) = V Go(e) V—V= —
VQ i (e) (F2)

where V is a nonsingular matrix, and showed that
the eigenvalues of Q2(e) always pass through zero
with a negative slope, unless e equals one of the
host-crystal energies ej(k). In this case, a number
of eigenvalues [equal to the degeneracy of ei(k)]
pass from —oo to + 00.

From these properties of the eigenvalues of
Q2(e), it is clear that the number of roots n (ei, e2)
of Eq. (Fl) in an energy interval [e&,ez] not con-
taining a pole in the Green's function is given by

with the normalization requirement

aji(e)ai (e)= 1 . (F7)

Using the Hellmann-Feynman theorem, one gets
that for all energies

PJ ~t( )
dG (e)

aJ e
d aJ e (FS)

Since the matrix dG (e)/de is symmetric, there ex-
ists some unitary matrix U(e) such that U(e)
)& [dG (e)/de] Ut(e) is diagonal. We get from Eq.
(FS) using the notation:

n (e&,e2)= n (e, )—n (e2), (F3) bj(e) = U(e)aj(e), (F9)

where n (e) denotes the number of positive eigen-
values of Q2(e). Thus, the energy roots of Eq.
(Fl) can be determined by repeated bisection of the
intervals until a desired accuracy is obtained.

To find the number of positive eigenvalues n (e)
of Q2 at some energy e, one can, of course, diago-
nalize Q2 directly, using standard techniques. A
much faster method, however, is to bring Qz into
upper triangular form Qq by the Gauss elimination
process and use the fact that the number of posi-
tive eigenvalues of any real symmetric matrix 3
equals the number of positive diagonal elements in
AT.

In our applications, we have chosen to work
with the matrix

Q3(e)=GO(e) —V '—= —Q|(e)V

rather than with Q2(e). The reason for this is that
the construction of the matrix Q2(e) from the
basic quantities Go(e) and V requires a double ma-
trix multiplication VGO(e) V for each trial energy
e=-e;. The computer time for performing these
operations is much longer than inverting V once.
Since Q3(e) is a symmetric matrix with only real
eigenvalues, the equation detQ3(e) =0 has the same
roots as D (e)=0 since det V+ 0.

We now prove that the eigenvalues p, ;(e) of
Q3(e) obey the condition

dp;(e)
&0

that

d/l j (e)

(F10)

We shall now show that the eigenvalues of
dG (e)/de (i.e., the diagonal elements in the ma-
trix U(e)[dG (e)/de]Ut(e)) are all nonpositive
(the off-diagonal elements are, of course, zero).
Consider a typical matrix element in the matrix
dG (e)/de:

dG (e) p (aljk&(jk lp&
de i „[e—ej(k)]

After diagonalization we have

dG (e)-- o
hatt

U( )dG (

dE

yy (+
l

J'k
& (jk

l && (F12)
[e—ej(k)]

( a
l

= U(e) ( a
l

lP&= lP&U"(e) .

Thus, the eigenvalues of dG (e)/de are of the
form

for all energies different from the unperturbed
one-electron energies, so that the method described
above for finding the roots of D(e) =0 can still be

dG (e)~

[e eJ~(k)]—
(F14)
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