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Localized interface states in coherent isovalent semiconductor heterojunctions
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Interface states can occur in semiconductor heterojunctions whenever a significant perturbation is present
across the interface, for example, interface defects, lattice mismatch, change of sign in the effective mass, or
sharp variations in the potential. We discuss here a different type of natural interface states appearing in perfectly
coherent and isovalent III–V heterojunctions even in the absence of such extreme perturbations. Using atomistic
empirical pseudopotential calculations we find that this is a general phenomenon occurring whenever the junction
is formed by
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(ii) occurs for any combination (n,m) while case (i) requires
n + m to be even; this further implies that n and m need to
have the same parity, being both either even or odd. For n + m

odd, Xz
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B. Computing the QW eigenstates

The eigenvalues and eigenvectors of the QW system are
obtained by solving the single-particle equation[

−β

2
∇2 +

∑
n,α

v̂α(�r − �Rnα,εn) + V̂αNL

]
| i〉 = Ei | i〉, (3)

where vα(�r − �Rnα,εn) is a screened atomic pseudopotential
depending on the identity α of the atom and the local strain
tensor ε at its relaxed position �Rnα:

vα(�r,ε) = vα(�r,0)[1 + γαTr(ε)], (4)

with γα a fitting parameter introducing a further dependence
on the identity of the neighbors.18 The other terms entering
Eq. (3) are the nonlocal spin-orbit coupling potential V̂αNL and
a scaling factor, β, for the kinetic energy.18

The unstrained pseudopotentials vα(�r,0) are determined
by requiring that the bulk binaries described by vα(�r,0) fit
experimental and local density approximation (LDA) high-
symmetry points (�, X, and L) energy eigenvalues and
effective masses. Other parameters, such as hydrostatic and
biaxial deformation potentials, are extracted during the fitting
procedure, but they are merely compared, rather than fitted,
to experimental data, and are not explicitly used as such in
the supercell calculations. In addition, a fit of the band-gap
bowing parameter of the AxB1−xC alloy is performed for each
AB/AC pair of binaries. All the pseudopotential parameters
used in this work are given in the Appendix.

Having obtained the pseudopotentials of each atom α and
the relaxed positions �Rnα , we solve the single-particle equation
(3) by making a plane-wave ansatz19 separately at the �̄

and M̄ points of the supercell BZ, calculating all the matrix
elements numerically and diagonalizing the Hamiltonian using
the folded spectrum method.20

C. Lattice relaxation by strain minimization

We obtain the relaxed geometry and configuration of
each QW system by minimizing the elastic strain energy.
After building the supercell from unrelaxed bulk primitive
cells, we simulate the presence of a fixed substrate in the
QW geometry by constraining the supercell to preserve
its in-plane lattice constant equal to that of the substrate.



VOICU POPESCU AND ALEX ZUNGER PHYSICAL REVIEW B 84, 125315 (2011)

A. Models of interface states in a single heterojunction

Early attempts on theoretical predictions of surface and in-
terface states date to the 1930s, when Tamm26 and Shockley27

first showed that the abrupt termination of a periodic one-
dimensional potential with a barrier leads to the appearance of
new solutions, characterized by a complex wave vector, and
thus decaying exponentially into the barrier. These states were
found to be energetically positioned either in the allowed or
forbidden energy bands of the unperturbed potential. While
both of these works considered the potential termination as
characteristic to a surface, thus describing a vacuum interface,
James28 applied the more general transfer matrix method
to show that any finite perturbation to a periodic potential
introduces new, localized states that can be either in the energy
bands or in the gaps.

The case of intervalley coupling in one dimension was
treated by Trzeciakowski,29 who employed the same transfer
matrix method of James.28 In his model, Trzeciakowski made
no assumptions about the form of the potential, other than it is
periodic on both sides of the interface between two materials
A and B. He arrived at two different cases for the occurrence
of IFLSs: (i) inverted-band systems, that is, the CB in
material A matching the VB in material B, thus recovering the
effective-mass-based results;7,8 (ii) similar bands (conduction
or valence) meeting at the interface, that is, without a change
in sign of the effective mass, but of different type (symmetry),
for example, � and X. This led to the conclusion that IFLSs
might be possible at the GaAs/AlAs or Si/Ge interfaces.29

B. Appearance of a single interface state at the
InP/GaP junction

To obtain the eigenstates for the single heterojunction
InP/GaP/GaP(001) we apply the approach described in
Sec. III, considering an (InP)n/(GaP)m SL with n = m =
80 MLs. Such large n and m values ensure (i) a complete
separation of the two InP/GaP interfaces and (ii) the suppres-
sion of any confinement effects. Since we are dealing with a
(001)-oriented quasi-two-dimensional system, we expect that
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the energy of es(�) increases monotonically until it becomes
resonant with the GaP matrix continuum [shown as a shaded
background in Fig. 5(a)] at n = 7 MLs. The discontinuity in
the n dependence of es(�) is due to its coupling with one of
the IFLSs, and it is discussed in more detail below.

It is interesting, at this point, to compare the results of
the direct calculation with those obtained using a particle-in-
the-box (PITB) model, shown as dashed lines in Fig. 5(a).
These were obtained using a unique potential well (of depth
0.75 eV) formed by the � valleys, the effective mass of �

electrons in InP, and ignoring any intervalley coupling. The
PITB model predicts two bound states in the � well, the first
one existing already for n = 1 ML, the second appearing at
n = 10 MLs. Comparison with the numerical results allows us
to identify the first solution as being the gap-localized es(�)
state for n � 8 MLs. In addition, when the �-confined states
are resonant with the continuum—that is, n � 7 MLs for the
first solution and all n values for the second—a special case
of the coupling discussed above (Sec. II) occurs: bulk states
of wave vectors �k = (0,0,kz) that fold into �̄ [compare with
Eq. (7)] may couple to the resonant
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Furthermore, as n increases, the amplitude of the interface
peaks and the amount of IF2 � character show no dependence
on n. In contrast, the symmetric IF1 state has a discontinuity
in its n dependence, that coincides with a similar behavior of
es(
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TABLE I. Parameters for the screened atomic pseudopotentials used for GaAs, InP, and GaP. � is given in (a.u.)3, all other parameters in
atomic units; see (A2) and (A3). A plane-wave cutoff of 5 Ry was used in fitting these potentials. Also listed is the strain fitting parameter γ

entering Eq. (4). Numbers in brackets are a form of scientific notation; for example, 5.1346[−09] means 5.1346 × 10−9.

� aSO γ a b c
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