
Identifying the minimum-energy atomic configuration
on a lattice: Lamarckian twist on Darwinian evolution

Mayeul d’Avezac* and Alex Zunger†

National Renewable Energy Laboratory, Golden, Colorado 80401, USA
�Received 11 September 2007; revised manuscript received 24 April 2008; published 4 August 2008�

We examine how the two different mechanisms proposed historically for biological evolution compare for
the determination of crystal structures from random initial lattice configurations. The Darwinian theory of
evolution contends that the genetic makeup inherited at birth is the one passed on during mating to new
offspring, in which case evolution is a product of environmental pressure and chance. In addition to this
mechanism, Lamarck surmised that individuals can also pass on traits acquired during their lifetime. Here we
show that the minimum-energy configurations of a binary A1−xBx alloy in the full 0�x�1 concentration range
can be found much faster if the conventional Darwinian genetic progression—mating configurations and letting
the lowest-energy �fittest� offspring survive—is allowed to experience Lamarckian-style fitness improvements
during its lifetime. Such improvements consist of A↔B transmutations of some atomic sites �not just atomic
relaxations� guided by “virtual-atom” energy gradients. This hybrid evolution is shown to provide an efficient
solution to a generalized Ising Hamiltonian, illustrated here by finding the ground states of face-centered-cubic
Au1−xPdx using a cluster-expansion functional fitted to first-principles total energies. The statistical rate of
success of the search strategies and their practical applicability are rigorously documented in terms of average
number of evaluations required to find the solution out of 400 independent evolutionary runs with different
random seeds. We show that all exact ground states of a 12-atom supercell �212 configurations� can be found
within 330 total-energy evaluations, whereas a 36-atom supercell �236 configurations� requires on average
39 000 evaluations. Thus, this problem cannot be currently addressed with confidence using costly energy
functionals �e.g., density-functional theory �DFT� based� unless it is limited to �20 atoms. The computational
cost can be reduced at the expense of accuracy: Searching for all approximate-minimum-energy configurations
�within 3 meV� of a 12- or 36-atom supercell requires on average 30 or 580 total-energy evaluations, respec-
tively. Thus it could be addressed even by costly energy functionals such as density-functional theory.
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I. INTRODUCTION

At the heart of solid-state physics and structural inorganic
chemistry is the form/function relationship between crystal
structure and crystal properties.1–3 This recognition has led to
continued efforts in measuring and cataloging crystal
structures4 and, more recently, to systematic efforts in the
theoretical prediction of crystal structures, either from induc-
tive “Pauling-esque” approaches2,3 or from explicit quantum-
mechanical total-energy minimization approaches.5 There are
generally two sets of structural degrees of freedom that need
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minimum energy of three-dimensional Ising models33 is non-
deterministic polynomial-time �NP� hard; i.e., the number of
trial structures of which the energy is evaluated during the
search grows exponentially with the number of atoms, N, in
the system.34 The key question about any such search proce-
dure is therefore how many evaluations of the total energy
are needed to obtain the correct minimum-energy configura-
tions with a given degree of confidence.

The number of configurations for which the total energy
must be evaluated in order to identify the lowest-energy con-
figurations with a given degree of confidence depends on the
extent to which a given material system is dominated by the
NP-hard combinatorial issue of site decorations, or by sim-
pler noncombinatorial factors. For example, from a
complexity-theory point of view, it is not clear whether
lattice-type and unit-cell optimizations are NP hard.35,36 In
metal alloys whose constituents are both nearly isovalent and
have the same lattice type �e.g., fcc Au1−xPdx,

28 fcc
Au1−xCux,

32 or bcc Mo1−xTax �Ref. 30��, alteration of the
lattice type corresponds to easily resolvable high-energy ex-
citations, whereas combinatorial A↔B cross substitutions on
the same lattice type �type �ii� optimization� cost little energy
and thus correspond to difficult-to-resolve low-energy exci-
tations. In contrast, cross substitutions of cations and anions
in valence compounds1,2 �e.g., As-on-Ga “antisite defect” in
GaAs or anion/cation cross substitutions in Al2O3 and
MgSiO3� correspond to easily resolvable high-energy excita-
tions, whereas alteration of the lattice type corresponds to a
low-energy excitation.8,37 As a result, determining the lattice
type becomes the bottleneck for structure optimization of



tures,” e.g., different ApBq=N−p decorations of the N periodic
lattice sites. It was shown empirically11 that the number of
ICSs evolves as �N2/3, whereas the number of all same-
shape structures �reduced by the symmetries of the lattice�
with N atoms evolves as �Ae0.6N. In order to find the
minimum-energy configurations of a binary alloy on a fixed
lattice, we follow the strategy outlined in Ref. 11, whereby
each ICS is sampled individually. There are 243 ICSs for
N�20 and 1282 ICSs for N�32 which must be explored to
search the full configuration space.

In many of the searches performed below, we will look
for the ground states in a single inequivalent cell shape, e.g.,
one n�m�p supercell, and sample its decorations. Obvi-
ously, obtaining the ground states of the system requires ex-
amining all ICSs, one by one. This is not attempted in this
paper. The exact algorithmic details for such a procedure can
be found in Ref. 11.

B. Definition of the ground states of a binary alloy
in the x« [0 ,1] concentration range

In lattice statistical mechanics,12,25,45 the ground-state line
is defined via the convex hull C�x H y



D. Type of questions asked

We will show that the performance of a search is highly
dependent upon the exact nature of the question asked. We
present in the following four searches with four different
objectives:

Question 1. Find the exact deepest ground state of a bi-
nary alloy on fixed lattice for a given n�m�p supercell
�e.g., for one ICS�.

Question 1�. Find the approximate deepest ground state of
a binary alloy on fixed lattice for a given n�m�p supercell.

Question 2. Find all exact ground states of a binary alloy
on fixed lattice for a given n�m�p supercell.

Question 2�. Find all approximate ground states of a bi-
nary alloy on fixed lattice for a given n�m�p supercell.

The four questions are separated according to whether one
seeks multiple answers, e.g., questions 1 and 1�, for which
we search for a number of ground states simultaneously, or
singular answers, e.g., questions 2 and 2�, for which we
search for a single ground state or an approximate ground
state. Furthermore, we differentiate between exact and fuzzy
searches. For instance, we define an answer to question 1� as
any configuration less than 3 meV from the exact deepest
ground state, as obtained from answering question 1. In a
similar fashion, we formulate question 2� as the search for
all approximate ground states. More explicitly, we search for
a convex-hull line C3 meV�x� which is no more than 3 meV
from the exact convex hull line C�x� �obtained here from
answering question 2� for a given n�m�p supercell, e.g.,
∀x� �0,1�, 
C3 meV�x�−C�x�
�3 meV. In practice, one does
not know C�x� beforehand. Hence, one cannot know without
solving question 2 when question 1� has been solved. Nev-
ertheless, this formulation allows us to compare the expense
of absolute convergence with approximate convergence, as
well as compare exact versus fuzzy search goals. Note that
each of these questions is termed with respect to a single
ICS. The result for all configurations with N lattice sites is
recovered by searching each of the �N2/3 ICSs.

III. MATING AND EVOLVING ALLOYS ON A FIXED



Wang et al.9 In their “linear combination of atomic poten-
tials,” each of the substitutional sites i of a backbone mol-
ecule is decorated by a fictitious atom �or chemical group�
with a fictitious potential Vi, where Vi=xiVA+ �1−xi�VB is the
concentration-weighted linear average of the end-point po-
tentials VA and VB. Each lattice site, or molecule site, is
occupied by a different virtual atom. By defining a virtual
fitness 	�n���� using these virtual atoms, the gradients
�	�n���� /�xi can be introduced which represent the “chemical
appeal” of an A↔B transmutation at site i.

The original approach of Wang et al.9 consists of mini-
mizing the virtual total energy with respect to the occupa-
tions xi, often resulting in a nonphysical minimum where the
sites are occupied by fictitious virtual atoms. Unfortunately,
there is no clear link between the virtual minimum and the
physical minimum-energy decoration. Furthermore, it is dif-
ficult to enforce physicality constraints such as Si

2= 
1 using
either Lagrangian multipliers or penalty functions. Generally,
“constrained” minimization procedures work by first finding
a region of space where the constraints are satisfied and then
looking for the minimum within this region. In our case,
each region spans a discrete point of the configuration space.
Hence, a constrained minimization approach will yield only
the closest physical point from the starting point, rather than
the physical minimum.50 The virtual-atom “jump” strategy
we have adopted �Fig. 3� circumvents these difficulties. We
evaluate 	�n���� and first-order derivatives with respect to
A↔B transmutation only at physical points. Proceeding
from a starting physical configuration �0, the gradient
�	�n���0� /�xi at a random site i is evaluated. A negative gra-
dient indicates that transmuting the atom at site i could lead
to a lower energy. In that case, the depth 	�n���1� of this
neighboring configuration �1 is evaluated, and the procedure
iterates from the better configuration �0 or �1. Otherwise, if
the gradient is positive, the procedure iterates with a different
lattice site j. The order in which the sites are evaluated is
random. Convergence is deemed achieved when every lattice
site has been explored without predicting or finding a better

neighboring configuration. A similar approach was intro-
duced recently by Keinan et al.10

C. Real-space bit-string search versus reciprocal-space search

Mating is the key to a successful GA: it must be able to
identify and pass on favorable traits and patterns from par-
ents to offspring. Previous genetic algorithms for type �iii�
general space-group optimization19,21–23,38,51 and type �ii�
configuration-search11 mate individuals directly in real space
�see Fig. 4�. The former approaches19,21–23,38,51 generally de-
fine a plane in real space which cuts the configuration of
each parent into two �see Fig. 4�b��. Two “half structures”
are then chosen and spliced together to form a new indi-
vidual. The objective is to integrate into one individual the
real-space patterns present in each half of the parents. Unfor-
tunately, this procedure also produces patterns straddling the
cutting plane which are not inherited but are rather an artifact
of the mating procedure. As such, it is likely that these pat-
terns are not particularly fit, i.e., that they do not correspond
to low-energy structures. Type �ii� configuration search pro-
ceeds by swapping atom types between two parents, e.g., by
performing a standard bit-string mating where the occupation
of each site i in the ICS is identified by a “spin variable”
Si= 
1 �where Si=1 corresponds to an occupation of site i
by an A atom and Si=−1 to that by a B atom�. It can also be
viewed as an extreme version of real-space mating where

Virtual Atom procedure.

2

4

−2

−4

1−1 Si

O(σ)

σ0

σ1

FIG. 3. �Color online� Description of the virtual-atom jump
minimizer. The algorithm evaluates O only at physical configura-
tions and its gradients only between first-neighbor physical points:
�i� A physical configuration �0 is chosen as a starting point. �ii� The
gradient at one lattice site i is evaluated. �iii� If this gradient is
negative, then P��1� is evaluated, and the search proceeds from the
better structure �0 or �1. �iv� If, on the other hand, the gradient is
negative, the gradient at the next lattice site j is evaluated, and the
search proceeds from there.

(c) Real-Space Bitstring Mating
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(b) Real-Space Mating
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(a) Reciprocal-Space Mating
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FIG. 4. �Color online� In �a� reciprocal-space mating, individual
configurations are identified as waves of A /B material �represented
by sinusoidal lines�. A new individual is constructed from the A /B
material waves of two parents. In �b� real-space mating, the two
parents are cut in half by a plane �dashed line in one-dimensional
�1D� figure� and the two half structures are spliced together into a
new individual. With bit-string mating �c�, each lattice site is
mapped as a bit on a bit string; this is equivalent to a real-space
mating, where each atom is at the center of its own cut-and-splice
region.
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each parent is cut into as many “cut-and-splice” regions as
there are atoms in the supercell �see Fig. 4�c��. In addition to
the cut-and-splice cross-over operation described above, one
also introduces a real-space mutation operator where ran-
domly chosen atoms in the unit cell are flipped from an A to
a B atom. The rate with which the mutation operator is ap-
plied and the number of sites to flip per mutation are con-
trolled via two parameters. We present here a mating proce-
dure for type �ii� optimizations, reciprocal-space mating,
which does not suffer from the drawbacks of cut-and-splice
operation and incorporates crossover and mutations in a
single operation.

Reciprocal-space mating �Fig.



choose to first fit total energies computed from first prin-
ciples onto a cluster-expansion functional. We will use a
cluster-expansion functional of Au1−xPdx which has been
previously fitted to a few density-functional-theory �DFT�
total energies.28 The resulting cluster-expansion functional
allows us to compute formation enthalpies outside the fitting
set to within �3 meV of DFT energies at a fraction of the
cost in computer resources. Indeed, beyond the need for a
fast functional to perform the ground-state search detailed in
this paper, the cluster-expansion functional can also be used
to obtain the formation enthalpy of the random alloy, or even
x-T phase diagrams using the Monte Carlo method.52

Configurational searches can be performed on explicit
Born-Oppenheimer energy surfaces Edirect�� , �R�� evaluated
on the fly53,54 or by first parametrizing Edirect�� , �Rmin��,
where �Rmin� is the set of relaxed atomic positions of con-
figurations �. The latter can be given by cluster expansion,
which fits a few ��50� total-energy calculations obtained
from DFT to a generalized Ising model,

�HCE��� = J0 +
1

N��i JiSi + �
ij

JijSiSj + ¯

+ �

k
�ECS�k̂,x��
S�k�
2F�k,x�� , �4�

where the occupation of each lattice site i by an A or a B
atom in configurationx



tions 1, 2, 1�, and 2� correspond, respectively, to Figs. 5–8.
The top three panels of each figure show the average number
of evaluations of the cluster-expansion functional required to
solve the figure’s particular question with an expectation for
success � in 2�2�8 supercells. In the lower panels, we
report the number of evaluation required on average by 2
�2�n supercells of increasing sizes and degree of confi-
dence �=95%. Statistics were obtained using a minimum of
400 independent evolutionary runs for each search strategy.

A. Question 1: Finding exact deepest ground states of a
given

nÃmÃp supercell

1. Real-space GA versus reciprocal-space GA

Figures 5�a� and 5�b� compare the use of real-space bit-
string and reciprocal-space matings in GA. Figure 5�a� re-
ports the average number of evaluations required to achieve
a given expectation for success, or degree of confidence,
within a 2�2�8 supercell. We find that the reciprocal-space
mating performs better than the real-space bit-string mating
for any degree of confidence �. The reciprocal-space mating
generally needs a smaller population size, leading to a
shorter “learning period,” during which the search strategies
evolve the starting population to the region of space contain-
ing the deepest ground state, hence resulting in a much lower

value at �=0%. For most of the degree of confidence range
�� �0% ,100%�, the curve is linear. This means that higher
success rates come at an exponential increase in the required
number of evaluations. Figure 5�b� reports the number of
evolutions required to find the exact deepest ground state of
2�2�n supercells versus n with a degree of confidence of
�=95% for real-space bit-string and reciprocal-space GAs.
We find again that the reciprocal-space mating is much more
efficient. Interestingly, both curves are sawlike, with the
number of evaluations required by 2�2�n supercells with
even n smaller than those with odd n. The cluster expansion
of Au1−xPdx is clustering, e.g., the first-neighbor pair interac-
tion favors Au-Pd patterns over Au-Au or Pd-Pd patterns.
This type of arrangement is not possible for odd n, leading to
a more complex configuration space.





with respect to the degree of confidence � �panel �c�� or the
size of the configuration space �panel �d��, r-LGA performs
only as well as the virtual-atom approach. It would seem that
the computing cost inherent to performing a virtual-atom
�VA� minimization overwhelms the Lamarckian-GA benefit
of mating local minima only. On the other hand, we find in
panels �e� and �f� that reciprocal-space mating performs at
least as well with a Lamarckian evolution �k-LGA� than it
does with a Darwinian evolution �k-GA�. Overall, the
reciprocal-space Lamarckian, k-LGA, is the most effective
method for finding the exact deepest ground state.

B. Question 2: Finding all exact ground states
of a given nÃmÃp supercell

1. Real-space GA versus reciprocal-space GA

Figure 6 reports the number of evaluations with respect to
� and the size of the configuration space required to find all
exact ground-states of a given supercell. Panels �a� and �b�
show that in contrast with question 1 �Fig. 5�, the real-space
bit-string r-GA is more efficient than the reciprocal-space
k-GA for question 2 at larger configuration space and confi-
dence values. Interestingly, we note that the real-space bit-
string strategy is more effective at finding all ground states
�Fig. 6� than it is at finding only the deepest one �Fig. 5�.
This may seem a paradoxical result. It stems from the differ-
ent objective functions which are minimized in the two
cases. To find the deepest ground state, we chose to minimize
the formation enthalpy �H��� alone. When searching for all
ground states, we minimize the distance to the known con-
vex hull, �H���−C�n��x��. The latter objective incorporates

more information than is needed a priori to find the exact
deepest ground state. Nonetheless, it makes the search more
effective. This result is quite general and is discussed in de-
tail in Appendix B.

2. Darwinian evolution versus Lamarckian evolution

Panels �c� and �d� of Fig. 6 compare the real-space Lama-
rckian r-LGA and Darwinian r-GA. We find again that the
real-space bit-string Lamarckian r-LGA behaves much like



�a� and �b� show little difference between the real-space
r-GA and the reciprocal-space k-GA, with the latter having a
slight edge. Figure 2 shows that a very large proportion of
local minima are within 3 meV of the deepest ground state;
hence these are acceptable answers to this question. The
relative abundance of solutions to the problem may explain
why r-GA and k-GA display similar success rates.

2. Darwinian evolution versus Lamarckian evolution

In panels �c� and �d� of Fig. 7, we show once again that
the real-space bit-string Lamarckian evolution r-LGA be-
haves like the simpler VA approach. However, the virtual-
atom approach turns out to be very efficient when searching
for the approximate deepest ground state. This is not surpris-
ing. Indeed, we have shown in Fig. 2 that a large ratio of the
local minima lies close to the exact deepest ground state. In
fact, it grows larger with the size of the configuration space
for those supercells we have studied. Since local minima can
be obtained in polynomial time and since the number of local



Furthermore, the complete answer to a ground-state search
problem contains in general a number of configurations
across the concentration range x� �0,1�. We have shown
that combining local refinements with a reciprocal-space
mating scheme and using as an objective function the dis-
tance to the known convex hull yields a search procedure
which efficiently solves ground-state problems. Nonetheless,
finding all exact ground-state configurations of an AxB1−x
alloy of even relatively small systems soon becomes intrac-
table ��330 assessed configurations for N=12, �2800 for
N=24, and up to �39 000 for N=36� without the use of
“indirect” first-principles methods such as cluster expansion.

However, this same problem can be solved approximately
�within 3 meV� at a much smaller cost in functional evalua-
tions ��30 assessed configurations for N=12, �380 for N
=24, and �580 for N=36�. Finally, the same search proce-
dure is also quite equal to solving single-valued searches
such as the exact deepest ground-state search presented in
the paper.
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size. Furthermore, the reciprocal-space mating incorporates
mutations and crossover in one single operation, without the
need for extra parameters. As a result, the Lamarckian
reciprocal-space GA is not only the most effective search
strategy presented here, it is also the most black-box-like.

We report in Table I the required number of evaluations
for answering question 2 with a degree of confidence of 95%
using the reciprocal-space Lamarckian GA and with respect
to different supercell sizes and populations. We find that
population size can have a large effect. Indeed, taking, for
instance, a 2�2�5 supercell �third row�, using a population
size of 20 individuals will require 5500 evaluations, whereas
increasing the size to 40 will obtain the answer in no more
than 440 evaluations. When evolving small populations, the
search may saturate �despite the diversity constraint�, e.g., a
not-quite-optimal region of the configuration space is found
from which the search cannot easily escape because all the
individuals in the population contain the same traits from
that region. In that case, the genetic algorithm is stuck until a
sufficiently favorable mutation happens along. If one in-
creases the population size too far, then the evolving the
population will take longer. As such, there exists a popula-
tion size which is a compromise between the possibility of
saturation and the speed of evolution. It is overall less detri-
mental to operate with a larger population than to risk satu-
ration.

Table II reports the number of evaluations required to
solve question 1 with 95% degree of confidence when using
bit-string Darwinian GA with and without mutations. The
mutation parameters have been optimized. We find that mu-
tations do have a very large impact on the efficiency of the
real-space r-GA search. Indeed, the mutation operators gen-
erally allow the search to explore a larger manifold by intro-
ducing new traits into the population. Although not shown
here, we have also added real-space mutations to the
reciprocal-space k-GA search �e.g., in addition to the

intrinsic mutations present within reciprocal-space mating�.
We find that this addition to k-GA do not accelerate the
search. It would seem that the intrinsic mutations of the
reciprocal-space mating are sufficient. As such, the
reciprocal-space GAs are more black box than the real-space
GA.

Table III gives the population sizes used for each method



APPENDIX B: SUBTRACTING THE CONVEX HULL
GIVES SMOOTH CONFIGURATION SPACE

One general question regarding the strategy we have cho-
sen for all ground states, namely, to minimize �H���
−C�x�� rather than �H��� at fixed concentration x�, is that it
constitutes a moving target, and thus may actually be more
difficult to optimize. We find however that �i� a fixed con-
centration is a cumbersome constraint during mating opera-
tions, especially with the reciprocal-space mating and the
Lamarckian refinements described in the paper, and �ii� it
requires for N-atom configurations N independent GA mini-
mization. Furthermore, there is evidence that removing the
convex hull actually makes the space less complex. Figure 9

plots the required number of evolutions for finding the exact
deepest ground state with respect to 2�2�n supercells for
all five search strategies presented here. In panel �a� of Fig.
9, the objective function minimized to solve question 1 is, as
mentioned earlier in the text, the formation enthalpy �H���.
On the other hand, in panel �b� the objective function be-
comes the depth to the known convex hull at iteration n of
the genetic algorithm, e.g., the objective function used pre-
viously to find all ground states, 	�n����=�H���−C�n��x��.
Remarkably, although this last objective is more complex
and, in fact, changes during the course of the evolutionary
run, both Darwinian GAs converge faster in panel �b�, and
both Lamarckian GAs and the virtual-atom approach con-
verge faster in panel �b� for supercells larger than 2�2�8.
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