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Abstract
When a disordered Cu0.75Au0.25 alloy is cooled down below Tc (=663 K),
it orders into the L12 phase (Cu3Au), exhibiting initially a microstructure of
domain walls. Whereas at long time (t) the average size of the domains
develops as a power law ∝t1/2, at short times a distinct incubation period
is observed experimentally. We show that a first-principles description of
a configurational Hamiltonian via the ‘mixed-space cluster expansion’ that
includes both ‘chemical’ and ‘strain’ effects produces such an incubation period
in Monte Carlo simulations, whereas the classical short-ranged (‘chemical’
only) Ising description does not. We find that the origin of this delay time is
the elastic energy, ensuing from the Cu–Au atomic size mismatch.

1. Introduction

Compound-forming alloys such as Cu0.75Au0.25 are substitutionally disordered above some
temperature Tc and order crystallographically below Tc. The time evolution of order, when
such an alloy is quenched from above to below Tc, is a central issue in alloy physics [1–4]. The
initial large energy cost associated with nucleating the ordered domain within the metastable
disordered region leads to a delay time (‘incubation period’) in the ordering kinetics. Such
a delay has been observed, for example, in Cu3Au [2–5], CuAu [6], and Mg3In [7] using
time-resolved x-ray scattering experiments and simulations. The present paper focuses on
understanding the physics underlying this early time evolution of ordering.

Since nucleation of a particular ordered variant from the disordered medium involves
breaking and remaking of chemical bonds in some localized region, this process is often
described [8–10] via a short-range Ising-type Hamiltonian representing the chemical (chem)
interaction of a single-site (J1), and between atomic pairs (Ji j ) or triplets (Ji jk) etc, as

Hchem(σ ) = J0 + J1

∑

i

Si (σ ) +
∑

j<i

Ji j Si S j +
∑

k< j<i

Ji jk Si S j Sk + · · · . (1)

Here the configuration σ is defined by specifying the occupation of each of the N lattice
sites by an A atom or a B atom, via a fictitious spin variable Si (i = 1, 2, . . . , N ), with
Si = −1 if site i is occupied by an A atom, and Si = +1 if site i is occupied by a B
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atom. Disappointingly, restricting equation (1) to first-nearest-neighbour interactions fails to
produce in finite temperature simulations any delay time (nucleation region) [8, 9]. However,
introduction of vacancies into a short-ranged Ising Hamiltonian produced a delay time in
Monte Carlo simulations [9], promoting the view that nucleation results from vacancies [9].
This scenario, however, does not have a clear physical link to the structure and energetics
of metal alloys. In phase-separating systems during nucleation, there is a change in the free
energy due to transfer of atoms from a less stable (disorder phase) to a more stable phase
(order phase). The difference between the chemical free energies of the disordered and ordered
phases supplies the driving force for the transformation. However, if the solvent and the solute
atoms have different atomic radii, the ensuing elastic strain energy can reduce this driving force,
since the formation of composition fluctuation is associated with the expenditure of elastic free
energy [12
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packing atoms of dissimilar sizes onto the lattice. The form

Hstrain(σ ) =
∑

k

�Eeq
cs (x, k̂)

4x(1 − x)
|S(k, σ )|2 F(k) (2)

describes such interactions, where S(k, σ ) is the Fourier transform of the spin configuration σ ,
F(k) is an attenuation factor [18], and �Eeq

cs (x, k̂) is the coherency-strain term calculated [14]
from total energies of the elemental A and B solids deformed elastically in various directions.
The total cluster expansion Hamiltonian is

ECE(σ ) = Hchem(σ ) + Hstrain(σ ), (3)

given by equations (1) and (2). The essential difference between the classical application
of Ising models [8–11] and the approaches using the density functional-based cluster
expansion [14–19] is that in the former approach the range and magnitudes of the interactions
are arbitrarily postulated at the outset, while the latter approach determines the interaction from
a microscopic electronic structure theory.

Here we use the first-principles configurational Hamiltonian of equation (3), fitted to the
LDA, to study the ordering kinetics of Cu0.75Au0.25. For Cu–Au, the interaction energies
{J } are obtained by fitting equation (3) to 38 LDA calculated total energies EQM(σ ) of
CupAuq periodic structures [19]. This automatically yields the non-vanishing pair interactions
(about 20) and the many-body terms (about 6) plus an infinite-ranged strain term of
equation (2). Without the strain term (2) the fit is qualitatively incorrect for long-period
(p, q large) structures [14], and misses the orientation dependence of the formation energies.
This Hamiltonian produces, via Monte Carlo (MC) simulations, physically accurate SRO
parameters, and order–disorder transition temperatures, as well as the formation enthalpies
of various ordered and disordered phases [19].

Applying these different Hamiltonians to ordering kinetics we find several crucial features.
(i) Hchem(σ )H
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and (b) the spinodal temperature is about 0.85 Tc. The experimental value is 0.96 Tc [20]. In
our simulations we work at a temperature (0.77 Tc) below this ratio. Note that working below
spinodal temperature means that there is no barrier to spinodal (001) ordering.

In all cases the system was quenched from the same disordered configuration to a
temperature below the transition temperature. The quenching temperatures in every case were
chosen in a such way that the ratio of quenched temperature to transition temperature was the
same for all the Hamiltonians. Using Monte Carlo spin-flip dynamics on lattice sites does not
mimic the true dynamical evolution of growth, for which, for example, a kinetic algorithm is
needed. However, we do not aim at predicting the kinetics path. Rather we aim at predicting
the time scaling exponent α of the energy �E ∼ t−α [21]. We define unit of time (Monte Carlo
step, or mcs) as one spin flip per site for all sites. In this way we shall exploit the dynamical
process inherent in the usual Monte Carlo method to construct the time evolution. This allows
for a suitable timescale of the kinetics at the expenses of losing the precise proportionality λ

between Monte Carlo time and real time. This is not a serious restriction as long as we are
interested in the growth exponent α (the slope in a ln �E versus ln t plot) which is independent
of the time scaling λ (even if it differs at nucleation or growth stages).

To demonstrate the range of interaction of the different Hamiltonians (a)–(c) we calculated
the ‘pair flip energy’, i.e., the energy needed to flip an Au atom at site i and a Cu atom at site
j separated by distance R along [110] in the random alloy into a Cu atom at site i and an Au
atom at site j . As expected, for the nearest-neighbour Hamiltonian (c) the pair flip energies
fall to zero beyond the first nearest-neighbour distance. A pair flip costs more energy, and is
longer range in Hamiltonians (a) and (b): for example, for nearest-neighbour distance, pair flip
energies for cases (a) and (b) are 23% and 25% higher than for case (c), respectively. For a
third-neighbour separation the flip energies are 14.5 and −0.8 meV/atom for (a) and (b), while
for fifth-neighbour separation they are 8.3 and 2.6 meV/atom. Thus, the driving force for nu-
cleation (the difference between the energy of the quenched-in, homogeneous disordered phase,
and the configuration having ordered domains) is reduced in case (a) relative to the other cases.

Figure 1 shows the time evolution of L12 ordered domains in Cu3Au system for the early
and late stages of growth. The L12 Cu3
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Ln[Number of MC steps (mcs)]

Hchem + Hstrain

T = 0.97 Tc
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