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Spin-dependent correlated atomic pseudopotentials

Alex Zunger
Solar Energy Research Institute, Golden, Colorado 80401

(Received 26 November 1979)

The previously developed first-principles density-functional (nonlocal) atomic pseudopotentials are extended to
include explicit spin effects as well as electronic correlation effects beyond the local-spin-density (LSD) formalism.
Such angular-momentum-and spin-dependent pseudopotentials enable the extension of pseudopotential applications
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V,„,(r) may be identified with the electron-nuclear
—(Z, + Z, )/x potential for atoms, the internuclear
repulsion in polyatomic
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all-electron calculations using the same Xn ap-
proach for V". As only the energy eigenvalues of
the pseudopotential equations and not the detailed
wave function or charge density are constrained to
fit experiment, the semiempirical pseudopotentia1
method has often yielded charge densities which
differ from those obtained from experiments or
from first principles calculations. "'" The semi-
empirical pseudopotential method has been suc-
cessfully used to study a large variety of surface
and chemisorption problems. "

The first pri-nciples pseudopotential method'~"0
calculates both the pseudopotential V, (r) and the
screening V",(n(r)) from the same (chosen). micro-
scopic model for electronic interactions. As such,
it establishes a one-to-one correspondence be-
tween the pseudopotential and the all-electron ap-
proaches using the same screening theory. It per-
mits
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given in the central field approximation by

I-~2m'+ V...
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mation included in the "tail" part of the "true" va-
lence wave functions is contained in the pseudo-
wave-functions and that this continue to be so, to
within a good approximation, even if the atomic
pseudopotential is used in chemical environments
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starting from R= ~ to the smallest R =R, possible
under our constraints. '

The resulting final pseudo-wave-function is
nodeless, normalized, monotonic, has a minimum
core projection, and is numerically identical to the
true wave function from r= ~ [as from Eq. (20) one
gets
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the screening potential are V (p„„)and
V.'.(p„&..1).

In the extreme limit of a,
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. from which we calculate the SIC pseudopotential
Vp', "'(r)
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of Eq. (31), where V„",(n, t') is given by expression
(15) but with the density n(r) calculated self-con-
sistently with SIC. It is seen that self-interaction
effects tend to somewhat deepen the pseudopoten-
tial near its minima but have a negligible effect
on the crossing point V~&' '(x„)=0 and on the po-
tential outside the core region. At distances that
correspond to the bond center in the bulk solid
(vertical arrows in Fig. 3), the SIC pseudo-
potential is numerically identical with the LSD
potential.

The effects of SIC on the screening [Eq. (34)]
are more pronounced: Whereas the LSD screen-
ing V,„(n(~),$ (r)) [dashed line in Fig. 3(b)] is state
independent and behaves asymptotically for the
neutral atom at large-r as Z,/r, the SIC screening
is state dependent and has a corrected larger-r
limit of (Z, -1)/r. The screened atomic pseudo-
potential in the LSD approach hence decays very
rapidly at large distances from the atomic origin
as the interelectronic repulsion V (n(x)) cancels
the core attraction -Z„/r and only the exponen-
tially decaying (-es") exchange-correlation part
V„,(n(r), $ (r)) is left. On the other hand, the SIC-
screened pseudopotential approaches at large dis-
tances the correct electrostatic limit of -1/x
[or —(@+1)/r for a Q charged ion]-as the Coulomb
and exchange-correlation self-interactions are
eliminated. We note that in recent calculations of
the vacancy in bulk Si, and LSD-type pseudo-poten-
tial was used. "'" This leads to the asymptotic
behavior of -(1/e)e 8' for the screened defect po-

Distance (a.u.)
FIG. 3. (a) LSD (---) and SIC-LSD {—) pseudopoten-

tials for Si (3s 3p ). (b) The local LDF screening j-—,
Eq. (15)) and the state-dependent nonlocal SIC screening
gull and dotted lines, (Eq. 34)]. The vertical arrows
indicate the position of the bond center in bulk silicon.
Arrows point to the limiting form of the pseudopotential
and screening.

tential of a neutral vacancy V' and -1/re and
-2/re for the singly- and doubly-ionized vacancy
(V" and V", respectively), while the electro-
statically correct limits are -1/ex, -2/ex, and
-3/er for V', V', and V", respectively, where e
represents dielectric screening. The use of prop-
erly self-interaction-corrected pseudopotentials
might have a significant effect on the relative sta-
bilities of V, V', and V" relative to the LSD cal-
culation of Ref. 39.

Figure 3(b) indicates that SIC affects not only
the large-x behavior of the screening: At dis-
tances smaller than the bond center in the solid,
the d screening (calculated here from the 3s23p'3d'
configuration and spin average for clarity of
display) is close to the local LSD screening as
the d orbital density in Si is very diffused, while
the more localized 3s and 3p orbitals give rise to
significantly lower screening potentials. The non-
locality of the SIC screening in Si extends to a dis-
tance comparable to the bond center in the solid
and hence can affect the band structure. The be-
havior of the screening in Fig. 3(b) inchcates that
Latter's suggestion" to remedy the self-interaction
problem in the LSD formalism by matching a -1/r
tail to the potential starting from an outer point
R~ (where -Z/8+ V, (A) = -I/R~) is insufficient,
as SIC has important effects even for r &AI. We
find, indeed, that SIC atomic total energies are
much closer to experiment than those obtained
with a Latter tail correction. ~'

Figures 4 and 5 show respectively, the SIC pseu-
dopotential V,",'"(r) and screening V&"&(r) [Eg.
(34)J of the spin-polarized Fe atom in the
(4s'4p'3d'), (4s'4p'3d') configuration. Whereas
SIC effects on the pseudopotentials are relatively
small [cf. Fig. 3(a)], spin effects are pronounced
and prevail at distances beyond the potential's
minimum. The minority spin (v = --,') pseudopoten-
tial is consistently deeper than the majority spin
(o =-,') pseudopotential. The opposite is true of the
screening potentials as the majority spin wave
functions are more localized than the minority
spiri wave functions. Whereas spin effects reduce
the magnitude of the crossing points of the bare
pseudopoieniiai V",' '(r'„) =0 for spin down
(r', & r'„), the crossing points of the total screened
pseudopotential V~~", '(r„)+ V"' &(~„)+l(l+ I)/2r '„
=0.0 show r, & r„itwahreduced difference (i.e. ,
2I&i+ ri I/I&i++-&i I

=2/o 4/0) -~
In a previous study, "the crossing points (r,] of

the unpolaxi @ed screened pseudopotential were
shown to constitute a sensitive intrinsic l-depen-
dent length scale for atoms. As r, ' is a measure
of the scattering power of a screened atomic core
for electrons of angular momentum l, it can also
be used as an anisotropic electronegativity scale.
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TABLE I. Components of the orbital energies of Si 3s 3p and Zn 4s 3d as obtained in LSD [Eq. (36)] and the SIC-LSD
[Eq. (35)]. Energies are in eV and the orbital moment (z„„)x)y„, ) is given in Bohr radii. DIFF indicates the differ-
ence, in eV, between the LSD and self-interaction corrected results.

SIC
Si 38
LSD DIFF SIC

Si 3p
LSD DIFF . SIC

Zn 4s
LSD DIFF SIC

Zn 3'
LSD DIFF

Kinetic
Pseudopotential
Local screening
Self- Coulomb
Self-exchange
Self- correlation
Orbital energy
Orbital moment

7.92
6.21

-23.62
-11.25

6.55
0.52

-13.67
2.18

7.88
6.19

-23.84
0.0
0.0
0.0

-9.77
2.19

0.04
0.02
0.22

-11.25
6.55
0.52

-3.90
-0.5%

10.18
2.56

-15.75
-8.68

4.99
0.43

-6.27
2.86

10.10
2.55

-15.85
0.0
0.0
0.0

-3.20
2.89

0.08
0.01
0.10

-8.68
4.99
0.43

-3.07
-1.0%

4.64
5.76

-15.10
-9.04

5.21
0.47

-8.06
2.74

4.81
5.41

-15.26
0.0
0.0
0.0

-5.04
2.73

-0.17
0.35
0.16

—9.04
5.21
0.47

-3.02
0.4%

306.80
-97.74

—216.67
-28.78

16.48
0.79

-19.12
0.89

302.26
-95.90

—215.83
0.0
0.0
0.0

-9.47
0.91

4.54
—1.84
-0.84

-28.78
16.48
0.79

-9.65
-2.2%

relative to the change in the screening energy
(e.g. , 14%%uo in Zn 3d). Hence, LSD pseudopoten-
tials cannot be used with a SIC screening to cor-
rectly describe localized. d orbitals.

(4) Self-Coulomb corrections always dominate
the positive self-exchange and correlation correc-
tions, the latter being about 60/0 of the former.
Self-interaction correction hence tends always to
loire~ the orbital, energy.

(5) Equations (28) and (29) describe the effects
of SIC on the total energy. In the pseudopotential
case one obtains

ESIC LSD @~D ~ ~v
Ps &s ~ ~~ nlrb nlfy

nlrb

with

(37)

5„,.=-.'(X„,.~
V..(;„,.) ~X„,.)

+ (X„„ie„,.(n„„1)i X„„), (38)

where g„, is the spin-polarized exchange and cor-
relation energy per particle. We find for Si,
~3 -0.70 eV and &,~ = -0.59 eV; for Zn, &4, = -0.60
eV and &~=-2.03 eV. Using~„=2 and A'»=2 for
Si and N~= 2 and N,~= 10 for Zn, the corresponding
direct corrections to the total energy are -2.6 eV
for Si (2.6'%%uo) and -21.5 eV for Zn (1.2%). Hence
the SIC lowering of the total energy of atoms
brings it into much better agreement with experi-
ment than the LSD energy, which is systematically
too high.

Figure 6 shows the differen. ce &,„—a~ in orbital
energies obtained with the standard LSD approxi-
mation and with the SIC-LSD approximation for the
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(observed: 3.8 eV). As this approach includes a
realistic description of correlation effects, the
results are ~uch better than those obtained by the
Hartree-Pock approach": -0.5 eV (negativel),
1.4 eV, and 2.6 eV for 0, F, and Cl, respec-
tively.

Finally, we compare the SIC-LSD atomic orbital
energies with the LSD orbital energies and with

the observed ionization energies of the outermost
electron in the atom (Table II). We have used the

improved correlation functional of Ceperley, "
which constitutes an improvement over the
von Barth-Hedin form. ' The long-known nonap-
plicability of Koopmans theorem to the LSD form-
alism arises not only from orbital relaxation ef-
fects (which are relatively small for outer orbi-
tals) but also from the existence of the spurious-
self-interaction terms in the potential. ' Hence,
the difference in the unrelaxed LSD total energies
for the atom and the ion with one hole in the nlo.

orbital is to lowest order

As the self-Coulomb term is typically of the same
order as -g„„, the latter constitutes a poor ap-
proximation to bE„„(Table II). While Slater's
transition-state procedure4 eliminates this term,
it does not provide a physical description of the
ground state potential in the atom. The SIC-LSD
approach eliminates this difficulty by constructing
self- consistently self -interaction-compensated
orbitals and potentials. Indeed, Table II shows
that the SIC-LSD approach yields orbital energies
that compare very well with experiment. The re-
maining discrepancies are due to orbital relaxa-
tion effects.

Atom IPe~t q SIC

Li
B
C
N

p
Mg
Al
P
Ar
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ever, that the Hohenberg and Kohn density-functional
theorem applies in its original form to local external
potentials. One cannot simply prove that the pseu-
dopotential energy functional Kq. (12) has a minimum
at. the correct density. The more general proof of Gil-
bert [Phys. Rev. B 12, 2111 (1975)] for nonlocal ex-
ternal potentials holds here. In the


