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Starting with an accurate pseudopotential description of the single-particle states, and following by
configuration-interaction treatment of correlated electrons in vertically coupled, self-assembled InAs/GaAs
quantum dot molecules, we show how simpler, popularly practiced approximations, depict the basic physical
characteristics including the singlet-triplet splitting, degree of entanglement �DOE�, and correlation. The mean-
field-like single-configuration approaches such as Hartree-Fock and local spin density, lacking correlation,
incorrectly identify the ground-state symmetry and give inaccurate values for the singlet-triplet splitting and
the DOE. The Hubbard model gives qualitatively correct results for the ground-state symmetry and singlet-
triplet splitting, but produces significant errors in the DOE because it ignores the fact that the strain is
asymmetric even if the dots within a molecule are identical. Finally, the Heisenberg model gives qualitatively
correct ground-state symmetry and singlet-triplet splitting only for rather large interdot separations, but it
greatly overestimates the DOE as a consequence of ignoring the electron double occupancy effect.
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I. INTRODUCTION

Two vertically1,2 or laterally3 coupled quantum dots con-
taining electrons, holes, or an exciton constitute the simplest
solid structure proposed for the basic gate operations of
quantum computing.4,5 The operating principle is as follows:
when two dots couple to each other, bonding and antibond-
ing “molecular orbitals” �MOs� ensue from the single-dot
orbitals ��i� of the top �T� and bottom �B� dots: ���g�
=�T�s�+�B�s� is the �-type bonding and ���u�=�T�s�
−�B�s� is the �-type antibonding state. Similarly, ���u�
=�T�p�+�B�p� and ���g�=�T�p�−�B�p� are the “�” bonding
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interdot separation. The unrestricted �U� HF �Ref. 11� cor-
rects some of the problems of RHF by relaxing the require-
ment of �i� two electrons of different spins occupying the
same spatial orbital, and �ii� the single-particle wave func-
tions have the symmetry of the external confining potential.
The UHF-EMA correctly give the singlet lower in energy
than the triplet,12 and can also predict Mott localization of
the electrons in the dot molecule, which breaks the many-
particle symmetry.11 However, since in UHF, the symmetry-
broken wave functions are only the eigenstates of the z com-
ponent of total spin S=s1+s2, but not of S2, the UHF-EMA
incorrectly mixes the singlet and triplet.11,12 For the simple
case of dot molecules having inversion symmetry, �e.g., mol-
ecules made of spherical dots but not of vertical lens-shaped
dots�, assuming EMA and neglecting spin-orbit coupling,
there is an exact symmetry. For this case, Refs. 16 and 17
indeed were able to project out the eigenstates of S2, yielding
good spin quantum numbers and lower energy. However, for
vertically coupled lens shaped quantum dots �i.e., realistic
self-assembled systems� or even for spherical dots, but in the



Vps�r�=
n,�v��r−Rn,��. The pseudopotentials used for
InAs/GaAs are identical to those used in Ref. 27 and were
tested for different systems.23,27,28 We ignored spin-orbit cou-
pling in the InAs/GaAs quantum dots, since it is extremely
small for electrons treated here �but not for holes which we
do not discuss in the present work�. Without spin-orbit cou-
pling, the states of two electrons are either pure singlet or
pure triplet. However, if a spin-orbit coupling is introduced,
the singlet state would mix with triplet state.

Equation �1� is solved using the “linear combination of
Bloch bands” �LCBB� method,29 where the wave functions
�i are expanded as

�i�r� = 

n,k



	

Cn,k
�	�
n,k,�J

�	� �r� . �2�

In the above equation, �
n,k,�J
�	� �r�� are the bulk Bloch

orbitals of band index n and wave vector k of material
	 �=InAs,GaAs�, strained uniformly to strain �J. The depen-
dence of the basis functions on strain makes them variation-
ally efficient. �Note that the potential V





A. Level-1 theory: All-bound-state configuration interaction



where �g and �u are the single-particle energy levels for the
MOs ��g� and ��u�, respectively. In the absence of spin-orbit
coupling, the triplet states �a� and �b� are not coupled to any
other states, as required by the total spin conservation, and
thus they are already eigenstates. The rest of the matrix can
be solved using the integrals calculated from Eq. �4�. The
results of the 6�6 problem were compared �not shown� to
the all-bound-state CI results: We find that the � states of
level-2 theory are very close to those of the all-bound-state
CI calculations, indicating a small coupling between � and �
orbitals in the strong confinement region. We thus do not
show graphically the results of level 2. However, since we
use only � orbitals, the � states of level 1 �Fig. 5�a�� are
absent in level-2 theory. Especially, the important feature of
crossover between � and �u states at 4 and 4.5 nm is miss-
ing.

C. Level-3 theory: Single-configuration in the molecular basis

As is well known, mean-field-like treatments such as RHF
and LSD usually give incorrect dissociation behavior of mol-
ecules, as the correlation effects are not adequately treated.
Given that RHF and LSD are widely used in studying
QMDs,10,13,14 it is important to understand under which cir-
cumstance the methods will succeed and under which cir-



Coulomb integrals in the new basis set are given by Eq. �B2�,
while other quantities including the effective single-particle
levels e� for the �th dot-centered orbital, and the coupling
between the �1th and �2th orbitals t�1�2

can be obtained from

e� = ����T̂���� = 

i

U�,i
* U�,i�i, �15�

t�1�2
= ���1

�T̂���2
� = 


i

U�1,i
* U�2,i�i, �16�

where �i is the single-particle level of the ith molecular or-

bital, and T̂ is kinetic energy operator. Using the transforma-
tion of Eq. �15�, Eq. �16�, and Eq. �B2�, we calculate all
parameters of Eq. �13�. Figure 7�a� shows the effective
single-dot energy of the “s” orbitals obtained in the Wannier
representation for both top and bottom dots. We see that the
effective single-dot energy levels increase rapidly for small
d. Furthermore, the energy levels for the top and bottom
orbitals are split due to the strain asymmetry between the
two dots. We compute the Coulomb energies JTT, JBB of the
“s” orbitals on both top and bottom dots, and the interdot
Coulomb and exchange energies JTB and KTB and plot these
quantities in Fig. 7�b�. Since JTT and JBB are very similar, we
plot only JTT. As we can see, the Coulomb energies of the
dot-centered orbitals are very close to the Coulomb energy of
the s orbitals of an isolated single dot �dashed line�. The
interdot Coulomb energy JTB has comparable amplitude to
JTT and decays slowly with distance, and remain very sig-
nificant, even at large separations. However, the exchange
energy between the orbitals localized on the top and bottom
dot KTB is extremely small even when the dots are very
close.

2. “First-principles” Hubbard model and Heisenberg model:
Level 4

In level-4 approximation, we use only the “s” orbital in
each dot. Figure 1�b� shows all possible many-body basis
functions of two electrons, where the top and bottom dots are
denoted by “T” and “B,” respectively. The Hamiltonian in
this basis set is

H =
eT + eB + JTB − KTB 0 0 0 0 0

0 eT + eB + JTB − KTB 0 0 0 0

0 0 eT + eB + JTB − KTB t − ̃BB
TB t − ̃TT

TB

0 0 − KTB eT + eB + JTB − t + ̃BB
TB − t + ̃TT

TB

0 0 t − ̃TB
BB − t + ̃TB

BB 2eB + JBB 0

0 0 t − ̃TB
TT − t + ̃TB

TT 0 2eT + JTT

� , �17�

where t= tTB and to simplify the notation, we ignore the or-
bital index “s



model by assuming eT=eB=�; JTT=JBB=U; and let JTB=V,
KTB=K. We can then solve the simplified eigenvalue equa-
tion analytically. The eigenvalues of the above Hamiltonian
are �in order of increasing energy�:

�i� ground-state singlet 1
g
�a�,

E = 2� +
1

2
�U + V + K − �16t2 + �U − V − K�2�; �18�

�ii� triplet states �threefold degenerate� 3
u,

E = 2� + V − K; �19�

�iii� singlet 1
u,

E = 2� + U; �20�

�iv� singlet 1
g
�b�,

E = 2� +
1

2
�U + V + K + �16t2 + �U − V − K�2� . �21�

In the Hubbard limit where Coulomb energy U� t, the
singlet-triplet splitting JS−T=E�3��−E�1
g��4t2 / �U−V�,
which reduces the model to the Heisenberg model

H =
4t2

U − V
S�T · S�B, �22�

where S�T and S�B are the spin vectors on the top and bottom
dots. The Heisenberg model gives the correct order for
singlet and triplet states. The singlet-triplet splitting
JS−T=4t2 / �U−V� is plotted in Fig. 5�c� and compared to the
results from all-bound-state CI calculations �level 1�, and
single-configuration approximations �level 3�. As we can see,
at d�6.5 nm, the agreement between the Heisenberg model
with CI is good, but the Heisenberg model greatly overesti-
mates JS−T at d�6 nm.

E. Comparison of pair-correlation functions
for level-1 to 4 theories

In the previous sections, we compared the energy levels
of two-electron states in several levels of approximations to
all-bound-state CI results �level 1�. We now provide further
comparison of level-1–4 theories by analyzing the pair-
correlation functions and calculating the electron-electron
entanglement at different levels of approximations.

In Fig. 8 we show the pair-correlation functions of Eq. �6�
for the 1
g

�a� and 1
g
�b� states at d�7 nm for level-1 and

level-3 theories. The correlation functions give the probabil-
ity of finding the second electron when the first electron is
fixed at the position shown by the arrows at the center of the
bottom dot �left-hand side of Fig. 8� or the top dot �right-
hand side of Fig. 8�. Level-1 and level-2 theories give
correlation-induced electron localization at large d: for the
1
g

�a� state, the two electrons are localized on different dots,
while for the 1
g

�b� state, both electrons are localized on the
same dot.24 In contrast, level-3 theory shows delocalized
states because of the lack of configuration mixing. This prob-
lem is shared by RHF and LSD approximations.

F. Comparison of the degree of entanglement
for levels-1 to 4 theories

The DOE of the four “�” states are plotted in Fig. 9 for
level-1, level-3, and level-4 theories; the DOEs of level-2
theory are virtually identical to those of level-1 theory, and
are therefore not plotted. We see that the Hubbard model has
generally reasonable agreement with level-1 theory while the
DOEs calculated from level-3 and level-4 �Heisenberg
model� theories deviate significantly from the level-1 theory,
which is addressed below.

�i� The 1
g
�a� state: The level-1 theory �



of the 1
g
�a� state in RHF and LSD approximations are also

zero as a consequence of lack of correlation. In contrast, the
Heisenberg model of level-4 theory gives S�1
g

�a��=1. This is
because the Heisenberg model assumes that the both elec-
trons are localized on different dots with zero double occu-
pancy, and thus overestimates the DOE.24,45

�ii� The 1
g
�b� state: The Hubbard model gives the DOE of

the 1
g
�b� state identical to that of 1
g

�a� state. This is different
from the result of level-1 theory, especially at large inter-dot
separations. The difference comes from the assumption in the
Hubbard model that the energy levels and wave functions on
the top dot and on the bottom dot are identical while as
discussed in Ref. 24, the wave functions are actually asym-
metric due to inhomogeneous strain in the real system. At
d�8 nm, the 1
g

�b�



product of single-particle wave functions. An entangled sys-
tem displays nonlocality which is one of the properties that
distinguishes it from classic systems. So far, the only well
established theory of entanglement pertains to two distin-
guishable particles,32,34 �e.g., electron and hole�. For a sys-
tem made of two distinguishable particles �A ,B�, the en-
tanglement can be quantified by von Neumann entropy of the
partial density matrix of either A or B,31–33



=0. In our approach, the maximum entanglement that a state
can have is S=log2N, where N is the number of single-
particle states.

�ii� The DOE measure of Eq. �A9�
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