
Anisotropy of interband transitions in InAs quantum wires: An atomistic theory

Marco Califano and Alex Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401, USA

(Received 4 March 2004; published 25 October 2004)

The electronic and optical properties of[001]-oriented free-standing InAs cylindrical quantum wires
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IV. ATOMISTIC DESCRIPTION OF D2d WIRES

The electronic structure of a nanostructure is calculated
by solving the single-particle Schrödinger equation:
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whereVsr d is the potential andei the energy eigenvalues. In
the effective mass approximation,m is taken as theeffective
mass, andV=Vextsr d is an external potential defining the
geometric confinement of the nanostructure. We use a differ-
ent approach, wherem=m0 is the actual(bare) electron mass
and the microscopic pseudopotential of the systemVpssr d is
obtained as a superposition of screened atomic potentials,

Vpssr d = Si,a vasr − Ri,ad, s9d

wherevasr −Ri,ad is the atomic potential for an atom of type
a located at the positionRi,a. The atomic pseudopotentials
are derived from the bulk LDA screened pseudopotential and
fitted to reproduce the measured InAs bulk transition ener-
gies, deformation potentials and effective masses.29 The total
potential is then expressed as

Vsr d = Vpssr d + Vnl, s10d

whereVnl accounts for the nonlocal part of the potential and
includes the SO coupling. In this atomistic approach Eq.(9)
we set up the zinc-blende geometry of the system(nanostruc-
ture plus its surrounding matrix) in a supercell with periodic
boundary conditions. The supercell size is chosen so as to
minimize any interaction between neighboring nanostruc-
tures. This is obtained by increasing the supercell size until
the calculated electron ground state energy does not change
to within 1 meV (the hole energies converge much faster
than the electron energies). We model LCG grown wires as
free-standing, unstrained systems. In order to simulate the
effect of an oxide coating, that is often present after the wire

growth,9 the nanostructures are embedded in a lattice-
matched fictitious wide-gaps,5.6 eVd material. This results
in large band offsets and the absence of strain between ma-
trix and wire. The atoms occupy therefore the ideal positions
of a perfect zinc-blende bulk crystal.

Due to the large number of atoms involved, we solve Eq.
(8) by using thefolded spectrum method,30,31 whereby it is
possible to calculate exactly only selected eigenstates of the
Schrödinger equation around an arbitrary reference energy
eref. In this approach, Eq.(8) is replaced by
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which is equivalent to it in the sense that theground stateof
Eq. (11) coincides with the solution of Eq.(8) with energy
closest toeref. Therefore, with this method the band-edge
states can be obtained by choosing the reference energy in-
side the band gap. The minimization procedure is carried out
in a plane-wave basis set using a preconditioned conjugate-
gradients algorithm. More details on this procedure can be
found in Ref. 31. With the single-particle energies and wave
functions thus obtained, we calculate the interband transition
energiesEcv=ec−ev and dipole matrix elements:

Mcv
sid = kcvupiuccl, s12d

where ev, cv and ec, cc are valence and conduction band
eigenenergies and wave functions, respectively, andp is the
momentum operator with coordinatespi si =x,y,zd. The
emission spectrum is then calculated as a function of energy
and temperature according to
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with their main angular momentum component, relative to 3
InAs wire sizes: the thinnest,d=1.2 nm, the thickest,d
=9.6 nm, and an intermediate size,d=3.6 nm. We see that
the energy gap and the energy splitting between the subbands
decreases with increasing wire diameter, owing to the de-
creased size confinement effect. As we will see, this feature
is one of the causes of the different temperature behavior of
the degree of linear polarization with different wire size.

B. Calculated polarizations and the role of dielectric mismatch

Figures 2 and 3 show the dipole matrix elements squared
uMu2 and the relative degree of linear polarization, for the
hi →ej si =1, . . . ,6 andj =1,2,3d transitions with light po-
larized along the wire axis(z-polarized) and perpendicular to
it (x-polarized). Thex- andz-polarized matrix elements rela-
tive to the same transition are offset for clarity. The degree of
linear polarization shown was calculated from Eq.(6) con-
sidering only the anisotropy of the matrix elements but not
the dielectric constant discontinuity between wire and sur-
rounding material(i.e., d=1). Indeedd<1 in a wire covered
by an oxide, where the two materials have similar dielectric
constants. In the case of a free standing wire in vacuum
s«out=1d, because of the small value ofd in Eq. (6), the
anisotropy due to the dielectric constant discontinuity domi-
nates over the contribution due to the matrix element aniso-
tropy. Using our calculated matrix elements and the values of
«in=14.6 for the InAs dielectric constant and«out=1, we find
that the degree of linear polarization of the fundamental tran-
sition h1→e1 assumes values.99% for all wire diameters
considered. On the other hand, if we assume isotropic matrix
elementssM'=Mid in Eq. (6), we obtain for the same sys-
tems the value of 96.8%. Therefore we find that, for a wire in
vacuum, the matrix element anisotropy contributes by less
than 3% to the total anisotropy.

C. Symmetry considerations

Table II summarizes the irreducible representations of the
first 3 conduction and 5 valence subbands inC‘v,

19 D2d and
C4v (Ref. 28) wires with similar sizes. In aC‘v wire the
lowest conduction subbandCs+ds0d has even parity and is
singly degenerate(excluding spin), whereas the next sub-

FIG. 1. Schematics of the calculated single-particle energy lev-
els (labeled with their main angular momentum component) for 3
InAs D2d cylindrical wires with sizesd=1.2, 3.6, 9.6 nm, respec-
tively. The dashed lines connect, respectively, CBM and VBM in
the different wires. Only a few states are shown that were used in
the calculations of the optical properties.

FIG. 2. (a) Matrix elements
squared and(b) degree of linear
polarization for the interband tran-
sitions hi →ej i=1, . . . ,5, j

=1,2,3), as a function of the tran-
sition energy for thed=3.6 nm
InAs wire.
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the different angular momentum composition of the sub-
bands, which is manifested in differentl-forbidden transi-
tions; (ii ) the fact that in continuous wires the subbands al-
ways have purel character, as opposed to atomistic wires
where, as discussed in Sec. III, each subband receives con-
tributions from different angular momentum components.
The angular momentum selection rule is therefore relaxed in
D2d wires and formally forbidden transitions may become
weakly allowed. We find that this mixing ofl character in the
wave functions ofD2d wires increases with decreasing wire
diameter (i.e., with increasing confinement) and with in-
creasing subband position(i.e., h5 and e3 are more mixed
than h1 and e1). This is reflected in the decrease, with in-
creasing wire diameter, of the magnitude of the optical ma-
trix elements relative to the formally angular-momentum-
forbidden transitions [compare Figs. 2(a) and 3(a)].
Furthermore the lower degree of angular momentum compo-
nent mixing ine2 compared toe3 is shown in the fact that,

although both conduction states have mainp character(and
h1 main (



effects in actual 1D systems are due to substantial mixing
between the four bulkG8v- and the twoG7v-derived valence
bands.

The next transitionsh2→e1d, is a G7→G6 transitions in
bothD2d andC4v wires and is therefore allowed to be polar-
ized only perpendicular to the wire axis. Theh2→e1 and the
h4→e1 transitions are forbidden19 in C‘v QWRs, due to the
different parity of the electron and hole wave functions. As
discussed above, these transitions would be formally
(angular-momentum) forbidden in ourD2d wires as well.
However, due to the nonzerol =1 component ofe1 we find
that they are weakly allowed: the dipole matrix elements for
these transitions decrease by over one order of magnitude
with increasing wire diameter(i.e., with decreasingl mixing
in e1), from 2.4 nm to 9.6 nm(both becoming less than 1%
of the value of the matrix element relative to the band gap
transition in thed=9.6 nm wire). As theh3→e1 transition is
only x-polarized inC‘v wires, the two lowest energy transi-
tions have opposite polarizations inD2d, C4v, andC‘v wires.
The fundamental transition is in fact polarized mainly along
the wire axis while the next allowed transition has onlyx
polarization in all symmetries. Theh4→e1 transition, in-
stead, being a transition between twoG6 subbands, can have
both polarizations: however, ind.4.8 nmD2d structures, it
is only polarized perpendicular to the wire. The polarization
component parallel to the wire axis increases from zero34 to
a value which is larger than that of the perpendicular com-
ponent, when the wire diameter decreases from 9.6 nm to 3.6
nm.

Temperature dependence:We find (Figs. 4 and 5) a stron-
ger temperature dependence forrsh1→e1d in thick wires: in
a d=9.6 nm wirer decreases by 10% with a 300 K tempera-
ture increase, compared to a 0.25% decrease in ad
=1.2 nm wire, for the same temperature variation. This size
dependence of the polarization can be understood in terms of
lateral confinement effects. Due to the quantum size effect,
thin wires experience a stronger confinement than thicker
wires, which means that they have a higher kinetic energy
introduced by the confinement. As this kinetic energy is re-
sponsible for the mixing20 of the valence bands at zone cen-

ter, thin wires have also a stronger mixing and therefore a



tion, found in Fig. 3, is masked by the broadening of the
fundamental transition in ad=9.6 nm wire. In ad=1.2 nm
wire (



parameterg2=g3) there is no polarization anisotropy in the
plane normal to the wire axis in aC‘v wire.21 By including
the effect of valence-band anisotropy, Yamaguchi and Usui21

predicted a weak dependence on the wire orientation for the
polarization alongz, and a strong dependence for the polar-
ization along two perpendicular directionsx andy (both in-
plane) for the fundamental transition in wires oriented in
directions different than[001] and [111]. Furthermore, only

for [001]- and [111]-oriented wires they found no in-plane
anisotropy, i.e.,uMxu= uMyu. For all other orientations the cal-
culated dipole matrix elements alongx andy were different.

Similarly, we find no in-plane anisotropy in the funda-
mental transition inD2d wires. However, higher energy tran-
sitions show polarization anisotropy in the plane perpendicu-
lar to the wire axis. Figures 8 and 9 show thexy-plane(' to
the wire axis) anisotropy we find in theh4→e1 andh5→e1
transitions inD2d QWRs, grown along the[001] direction,
with dø6 nm, where the matrix element along the[110]
direction is different from that along thef110g direction. We
see that theh4→e1 transition is prevalently[110]-polarized
with only the d=9.6 nm wire polarized alongf110g. The
opposite is true for theh5→e1 transition, where the only size
for which the transition is prevalently polarized along[110]
is d=6 nm. However thed=9.6 nm wire is found mainly
polarized alongf110g and thed=6 nm wire mainly along
[110], in both transitions. In all other transitions considered
we found no anisotropy in thexy plane.

VI. SUMMARY

In summary we applied an atomistic, empirical pseudopo-
tential method to calculate optical transitions in free-
standing, unstrained[001]-oriented cylindrical InAs quantum
wires with diameters in the experimentally accessible range
10–100 Å. We found evidence of strong coupling of bulk
G8v- and bulkG7
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