Quantum architecture of novel solids

A. Zunger

National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 USA alex zunger@nrel.gov

Received 25 Sep. 2000, accepted 22 Dec. 2000 by C. Thomsen

A₁. The current status of our understanding of Quantum Mechanics is that if one specifies the chemical formula of a compound (e.g., CuAu, or GaAs, or NiPt) it is still impossible to predict if this material is a superconductor or not, but it is now possible to predict its crystal structure. This is a nontrivial accomplishment for there are as many as 2^{*N*} possible structures for a binary compound. This article reviews this classic question of structural chemistry and condensed matter physics: How can one figure out which of the astronomic number of possible crystal structures is selected by Nature?

Keywords: Crystal structures, Local Density Approximation, cluster expansion, structural selectivity

PACS: 61.50.Ah, 64.10.+h, 71.15.Ap

1 Introduction

Fig. 2 Fig. 1 Schematic illustration of how the LEGO idea works. See Refs. [4, 5]

than the interaction between nearer atoms, then the expansion of $E()$ could require fewer than 2^N interaction energies J_G . Thus, an LDA calculation of the total energies E_{LDA} () of N_{σ} ordered configurations could be used to determine N_{σ} interaction energies [2], thus a ording examination of the rate of convergence of the series E_{LEG} (). If the series converges after $\approx 10 - 20$ terms (as it does in many cases, see below) then one can calculate $E()$ for any configuration by just summing over that many terms. Furthermore, one could combine such an expansion

allows us to calculate the excess energy $E()$ of any arbitrary atomic configuration, (even consisting of more than 100,000 atoms) and it includes automatically the energy lowering due to atomic relaxations. Formulation of the method requires as input the $T = 0$ K excess energies E_{LDA} of 20-30 ordered compounds A B consisting of only 2-16 atoms per unit cell. The excess energy $E(A, B, \cdot)$ of such ordered A, B bulk compounds is defined as the energy gain or loss with respect to the bulk constituents at their equilibrium lattice constants:

$$
E_{LDA}(A, B;) = E \cdot (A, B,) - x E_A (a_A) - (1 - x) E_B (a_B). \tag{1}
$$

Here, denotes the type of ordered structure, $x = p/(p + q)$, and a_A and a_B are the equilibrium lattice constants of the bulk elements A and B. $E \cdot (a_A)$ and $E \cdot (a_B)$ are the total energies of A and B, respectively. The formation energies of such small unit cell structures can be easily calculated within the local-density approximation

t 1 These calculations provide comprehensive state-of-the-art first-principles description of ground state structures, phase stability, and short-range order in these systems.

The new Cu Pt "D7-type" ground state structure was predicted [12,13], and subsequently found experimentally by S. Takizawa (1996). This is illustrated in Fig. 2 and demonstrates the power of first-principles theory to predict previously unsuspected structures!

Fig. 2 Illustration for prediction (Ref. [12,13]) and subsequent verification of a new structure for Cu-Pt.

We are now at the beginning of the process of solving one of the classic problems of Quantum Theory of Solids: We are transforming our qualitative and semi-quantitative understanding of sohesion into a predictive theory of new materials!

References

- [1] P. Villars and L.D. Calvert, Pearson's Handbook of Crystalographic Data for Intermetallic Phases, Amer. Soc. Metals, Metals Park, OH (1985)
- [2] J. W. Connolly and A. R. Williams, Phys. Rev. **27** (l983) 5169