


2. Overcoming Theory Bottlenecks: The “Order-N” Pseudopotential Configuration-In-
teraction Approach We have developed an accurate, general-purpose electronic
structure approach suitable for addressing the leading physical questions pertaining to
quantum dots. The method has two parts: A: The single-particle problem and B: the
many-body problem. In what follows, we describe the main ideas behind this new
method, followed by a discussion of its limitations and our approach to these limitations.

2.1 A: The single-particle problem
1. The shape, size and composition of the dot are accepted as “input”, i.e., there is no

attempt to predict them from “growth models”. This decision stems from the observa-
tion that such variables are often not controlled by the thermodynamics of the growth,
but that post-growth, it is possible to measure the approximate shape, size and composi-
tion, thus use them as “input” to the theory. We can do arbitrary 3D shapes and com-
position profiles [4].
2. Atoms are relaxed to their strain-minimizing positions using an atomistic “force

field” fit to LDA [10]. We currently use a three-parameter generalized “Keating mod-
el” that fits C11, C12, C44 and reproduces LDA relaxation of energies of related ordered
compounds. We avoid the less-accurate continuum elasticity approach for strain minimi-
zation, in which the atomistic point-group symmetry of the dot is often overlooked [4].
3. The single-particle screened pseudopotential is fit to bulk solids: The total screened

pseudopotential is written as a superposition of atomically screened potentials at sites
Rn for atom type a,

Vext þ Vscr ¼
P

n;a
Vaðr � Rn;aÞ : ð1Þ

The screened potentials {Va} are fit to the measured band structure and anisotropic
effective masses of the underlying bulk materials, as well as to the LDA-calculated bulk
wavefunctions, deformation potentials, and band offsets [11, 12]. We thus avoid “band
gap LDA errors”. We have developed a few schemes permitting us to achieve “LDA
quality wave functions” [11, 12] with “experimental quality band gaps and masses”.
Spin–orbit splitting is included. For certain elements a, a non-local potential is used. A
separate potential is fit for the surface atoms [13], assuring reproduction of the electro-
nic structure obtained from model “slab calculations”.
4. The wavefunctions are expanded in plane-waves, thus affording a microscopic de-

scription (not just a macroscopic, “envelope-function” description), as well as represent-
ing multi-band coupling (i.e., many bands at G) and inter-valley (G–X–L) couplings [10].
5. The pseudopotential-plane wave Hamiltonian is diagonalized incredibly rapidly via

the order-N “Folded Spectrum Method” (FSM) [14, 15]. Our philosophy is that much
of the physical interest in quantum dots centers around energy levels in the vicinity of
the band gap, but that current computational approaches do not take advantage of this
fact. For example, a 10000 atom Si dot has 20000 occupied levels, but only the few
highest are “interesting”. Still, quantum mechanics forces us to calculate all of the
19999 levels below the VBM (= level number 20000) or the CBM (= level number
20001). This is wasteful, not to mention time consuming. The Folded Spectrum Method
[14] thus “folds” the lowest �19999 levels to very high energies, leaving the VBM or
CBM as the lowest solutions of the modified Hamiltonian (H –– A)2. Finding the eigen-
solutions to the squared Hamiltonian is both sufficient (as the VBM and CBM are
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captured) and very fast. These solutions are identical to those that are obtained by
diagonalizing brute-force the full Hamiltonian. In practice, we search for �10 eigensolu-
tions in the neighborhood of the VBM and CBM. Another modification of this method,
the Linear Expansion in Bloch Bands (LCBB) [16], affords an even faster diagonaliza-
tion, applicable literally to million-atom quantum dots. These methods run on a parallel
computer platform for extra speed, as described in Ref. [15].

2.2. B: The many-body problem
1. Inter-electronic integrals are computed numerically: Given the single-particle wave

functions {wi} from the pseudopotential calculation, we calculate the screened inter-elec-
tronic Coulomb Jij and exchange Kij [9, 17], integrals numerically using a multi-grid





3. Established an energy-level model
for the “semiconductor embedded”
self-assembled InAs/GaAs dots [23–
29]. Perhaps the most studied quan-
tum dots are the “self-assembled”,
strained InAs/GaAs dots. We pro-
vided the first comprehensive theory
for interpreting a broad range of ex-
perimentally determined energy levels
in such structures resulting from PL
and PLE measurements, as well as in-
ter-subband spectroscopy and Stark
effect. The results include the determi-
nation of excitonic energies; spacings

between electron levels, hole levels; electron and hole binding energies; wetting-layer
energies, the magnitude of the excitonic dipols, and their pressure dependence. We be-
lieve that such results could become a “standard energy level model” for these types of
dots. We show in Fig. 4 the realistic wavefunctions that result from such atomistic calcu-
lations. Note that they do not look at all as EMA (s, p, d) states.

3.2 The main accomplishments to-date for the “intermediate-energy problems”
1. Predicted the electron-addition energies in freestanding InAs [30, 31] and CdSe [32]

dots, in excellent agreement with recent STM-carrier injection experiments. Figure 5
illustrates the predictability of the model for both addition energies and quasi-particle
gaps of InAs. More importantly, by calculating the total energies for different electronic
configurations of the charged dot, we have.
2. Established deviations from Hund’s rule as well as “spin-blockade” [32]. Such devia-

tions represent the competition between gain of exchange energy (favoring Hund’s
rule) and Coulomb repulsion. Our recently published predictions [32] await experimen-
tal testing.

3.3 The main accomplishments to-date, for the “low-energy problems”
Established theory of electron–hole exchange in dots [5, 9, 17]. We tackled a long-

standing fundamental problem in quantum dot physics: Does the electron–hole ex-
change have just a short-range part (resulting from wavefunction overlap) or could it
have a long-range component? In bulk solids, the long-range component results from
dipole interactions which average to zero in a spherical dot. It was thus believed that in
dots, there is but a short-range exchange. Indeed the measured e–h exchange was al-
ways fit to a short-range formula with the scaling Dx � R––3.
Our accurate wavefunctions permitted an assessment of long versus short-range com-

ponents. We found in Si, InP, and CdSe an unequivocal long-range component which
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dominates over the short-range component [5, 9, 17]. Our subsequent analytical study
[17] revealed that the long-range exchange originates from the previously neglected
monopol-monopol interactions. Our calculated exchange splitting versus size agreed
very well with the measured data for InP [9] and CdSe [9] (without any fit). This work
established a new view on the microscopic nature of electron–hole exchange interac-
tions in nanostructures. A similar recent study on multi-excitons in InAs/GaAs dots [33]
establishes the nature of many-body multiplet effects in the spectra.
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Fig. 4. Color top view of calculated electron and hole wavefunctions squared for lens-shaped and
pyramidal InAs dot embedded in GaAs; Ref. [23]



4. Summary The pseudopotential approach is a practical method for describing atom-
istic and microscopic aspects of the electronic structure of nanostructures. When such
aspects are not important (e.g., large systems), an atomistic approach is not needed,
and conventional continuum approaches are fine. Furthermore, continuum approaches
can be conveniently used to fit known data even for small nanostructures, although the
predictive ability of these methods is questionable.
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Fig. 5. a) Calculated (*) and mea-
sured electron (e) and hole (h) ener-
gies of InAs dots. b) Calculated and
STM measured quasiparticle gaps;
from Ref. [30] and references therein
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