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where the superscriptL andR denote the left-hand-side an
right-hand-side dot, respectively. The electron and h
bonding and antibonding wave functions are delocaliz
over the two quantum dots. When the electron-hole inter
tion is taken into account, one would expect that in t
ground state the electron and the hole would be localize
the same quantum dot, as shown in the upper part of Fig
However, mean-field approaches that estimate the elect
hole interaction using the unperturbed wave functions
Eqs.~4!,~5! are unable to break the symmetry of the electro
hole pair, and lead to an unphysical solution where the e
tron ~and separately the hole! resides on the two dots with
equal probability. This is true even for self-consistent me
field techniques~such as conventional Hartree-Fock or LD
approaches! that calculate iteratively the potential expe
enced by the electron due to the electrostatic field gener
by the hole. We conclude that mean-field approaches, w
have been used successfully to calculate the electron-
interaction in strongly-confined quantum dots, fail to d
scribe the electron-hole localization in quantum dot arra
and are unable to predict, even qualitatively, the exciton
sociation energy.

In this paper we show that the exciton dissociation ene
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culation based on single-particle wave functions calcula
via our pseudopotential approach for a dot molecule.

We consider here spherical CdSe quantum dots having
wurtzite lattice structure. The diameter of the dots isD
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pol decreases rapidly aseout increases. As a result, th

total DE(L) decreases.
In order to test the accuracy of the CI expansion, we h

calculated the dissociation energy using a larger CI basis
consisting of 64 electron-hole pairs~256 including spin!.
This basis set is constructed froms andp valence and con-
duction states. We find that forL543 Å andeout56.1 the
exciton dissociation energy changes from 164 meV
166 meV when the larger basis set is used. This suggests
in the dot molecule, as in the single dot, configuration m
ing has a small effect on the electron-hole interaction,
cause of the large separation between the single-particle
ergy levels.

We next test a simplified model forDE(L). The dissocia-
tion energyDE(L) can be estimated by subtracting the ele
trostatic attraction between the two charged dots from
dissociation energy at infinite distanceDE(‘):

DE~L !5DE~‘!2
e2

eoutL
. ~13!
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This simple expression makes two fundamental assumpti
~i! that the interaction between the charged dots can be
proximated by the interaction between two pointlike charg
at distanceL and~ii ! that the electronic coupling between th
single-particle wave functions is negligible. We see fro
Fig. 3 ~solid lines! that this approximation works remarkab
well, even at small dot-dot separations, suggesting that
assumptions~i! and ~ii ! are adequate for CdSe nanocrysta

In summary, we have shown that a pseudopotential ca
lation for a dot molecule, coupled with a basic CI calculati
of the exciton energy levels, provides directly the excit
dissociation energyDE(L,eout), including the effects of
wave function overlap, bonding-antibonding splittin
screened Coulomb attraction between the electron and
hole in different dots, and polarization effects. We find th
DE decreases asL decreases and aseout increases.
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