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We present a parallel implementation of the previously developed folded spectrum
method for empirical pseudopotential electronic structure calculations. With the par-
allel implementation we can calculate a small number of electronic states for systems
of up to one million atoms. A plane-wave basis is used to expand the wavefunctions
in the same way as is commonly used inab initio calculations, but the potential
is a fixed external potential generated using atomistic empirical pseudopotentials.
Two techniques allow the calculation to scale to million atom systems. First, the
previously developed folded spectrum method allows us to calculate directly a few
electronic states of interest around the gap. This makes the scaling of the calculation
O(N) for an N r) ≡

[
−1

2
∇2+ V(r)

]
ψi (r) = εiψi (r), (1)

where{ψ(r)} are orthogonal single particle wavefunctions andV(r) is the total potential of
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the method hasO(N) scaling for a fixed number of states. Section II of this paper describes
the computational aspects of the folded spectrum method in detail. This method has been
applied to the study of free-standing [8–11] and embedded [17] quantum dots, as well as to
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state{ψ} by seeking the variational minimum of

F = 〈ψ |(Ĥ − εref)
2|ψ〉. (3)

Unlike the variational minimum of〈ψ |Ĥ |ψ〉, which yields the lowest energy state ofĤ ,
the minimum solution ofF gives the band edge states ifεref is placed inside the band gap.
Although simple algorithmically, the real challenge of the FSM is to develop a scheme
which findsψ efficiently from the minimization ofF . This is not an easy task because
changingH to F significantly increases the condition number of the linear operator (the
matrix) [21]. We have used the conjugate gradient method to solve the variational minimum
of F (this is described in detail in Ref. [19]). The Lanczos method is also appropriate for
this type of problem, and a study of a variant of the method applied to the FSM is presented
in [22].

To explain how we use the conjugate gradient method for this problem we must go into
more detail of the plane-wave expansion for the wavefunctions. In a plane-wave represen-
tation the wavefunctions can be written as

ψ(r) =
∑

q

a(g)ei g·r . (4)

The selection of the number of plane-waves is determined by a cutoffEcut in the plane-wave
kinetic energy1

2|g|2, where{g} are the reciprocal lattice vectors. The wavefunctionψ is
stored in reciprocal space by its coefficientsa(g). It is transformed onto a real space grid
ψ(r) by applying a parallel FFT, which will be described in the next section.

Application of (Ĥ − εref)
2 to ψ is carried out [19] by twice applying [−12∇2+V(r) −

εref] to ψ . The term− 1
2∇2ψ is computed in reciprocal space, whilleV(r)ψ(r) is obtained

by using an FFT to transforma(g) to real space,ψ(r), then applyingV(r) toψ(r) and trans-
forming the product back tog space. The result can be cast in the same form as

∑
g c(g)ei g·r

(with the same energy cutoff for{g}). Then [− 1
2∇2+V(r) − εref] is applied again to this

function to get the final resultF . Once F is obtained, we minimize it with respect to
the variational wavefunction coefficientsa(g), using the preconditioned conjugate gradient
method [23]. The conjugate gradient method is defined as a series (indexed by superscript
{ j }) of sequential line minimizations of the task functionF . A line minimization implies
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The preconditionerA(g) is ag-space function

A(g)= E2
k(

1
2g2+ V0− εref

)2+ E2
k
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FIG. 2. Distribution ofg vector columns to three processors. Theg vector columns are produced by dividing
the sphere ofg vectors intozdirection columns (see Fig. 3a). The columns are then ordered by length and assigned
to the three processors as shown, with processor zero being assigned all the red columns, processor one the blue
columns, and processor two the green columns.
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FIG. 3. Parallel three-dimensional FFT. This shows which processors deal with which part of the grid during
the three dimensional FFT. The colors red, blue, and green correspond to the part of the grid that resides on
processors zero, one, and two (for more details see text in Section III).

The size of the real space grid for the potential is typically taken to be twice the diameter
of the g space sphere. A large saving in computations and communications can be made
by not performing FFTs on the zero columns and not transforming the zero columns. At
each step of the distributed 3d FFT, the data we are working on are expanding out to fill
the full real space grid. For this reason it is inefficient to use FFT parallel libraries, which
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cannot take advantage of this saving and often have very restricted data layouts such as
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where{Rα} are the atomic positions of atom typeα. The spherical atomic empirical pseu-
dopotentialsvα(r ) are obtained via a fit to the bulk band structure of the constituent mate-
rials [6]. The empirical pseudopotentials of Ref. [26] are used for InAs and GaAs. Using
this method, the potentialV(r) of a million atom system can be readily constructed. The
main task here is to calculate the wavefunctionsψi (r) near the band edge of the energy
spectrum (i.e.,i near Nocc). A 5 Ryd cutoff energy is used for the plane-wave basis in
Eq. (4).

To test the speed of the code for different numbers of processors and different system sizes
we chose three InAs/GaAs quantum dot systems containing 8000, 97,336, and 1,000,000
atoms (see Fig. 4). The real space grid sizes for the potential for these systems are 1283,
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V. APPLICATION: ELECTRONIC STATES OF A PYRAMIDAL QUANTUM DOT

The ESCAN code is particularly suited to studying quantum dots, as it is reasonably
straightforward to construct accurate empirical pseudopotentials for these systems, and the
number of atoms, while being beyond the size possible withab initio codes, is within
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potential. As a result, the wavefunctionψi (r) has spin-up and spin-down components. The
relaxed InAs pyramid is placed inside a 28a× 28a× 30a GaAs matrix periodic supercell.
The resulting system contains one quarter million atoms. We have calculated the four
conduction band minimum (CBM) states and four valence band maximum (VBM) states.
The real space grid size is 448× 448× 480. On a 128-processor run, each processor holds
298 z-columns and holds on average 42,300g coefficients for each wavefunction. The
number ofg coefficients varies from 42,284 to 42,310, which balances the memory usage
on each processor. The whole calculation takes about 20 h on 128 processors of a Cray T3E
computer.

The band gap increases from 0.41 eV for bulk InAs to 0.96 eV in the quantum dot. The
charge density of the four CBM states and four VBM states are plotted in Fig. 5. They are
all localized inside the quantum dot. A more detailed account of this work has been reported
in [26].

VI. CONCLUSION

We have introduced an atomistic approach to calculating the electronic states of sys-
tems up to one million atoms. In this approach, the wavefunction is expanded using a
plane-wave basis, as in conventional
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