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Electron-hole exchange interactions can lead to spin-forbidden ‘‘dark’’ excitons in direct-gap quantum dots.
Here, we explore an alternative mechanism for creating optically forbidden excitons. In a large spherical
quantum dot made of a diamond-structure semiconductor, the symmetry of the valence band maximum~VBM !
is t2. The symmetry of the conduction band minimum~CBM! in direct-gap material isa1, but for indirect-gap
systems the symmetry could be~depending on size! a1 , e, or t2
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inverse micelles synthesis,16 and thermal vaporization.17 The
most popular experiments that probe QD’s are opti
measurements,10,11,17 in which an electron-hole pair~an ex-
citon! is generated in the QD by the incoming photons. T
physics of the experiment is dominated by the electron
hole energy levels, the electron-hole Coulomb interacti
and the response or screening of the rest of the electron
the valence band.

The classical theoretical approach to the problem is
effective mass approximation~EMA!, which predicts that the
shift in the single-particle energy gap scales as 1/R2 with the
radiusR of a quantum dot. The EMA and a size-independ
screening assumption predict that the Coulomb energy sc
as 1/R in the limit R→0. However, recent microscopi
calculations,7,8,18–22show that the single-particle energy ga
dependence onR is less strong. This is due mainly to ban
mixing and nonparabolicity effects. In addition, the Coulom
binding energies are expected to increase faster thanR
because the dielectric screening becomes less efficient
in the bulk.23–25

In the past, the calculation of energy levels of QD’s w
also performed using EMA,26 empirical tight binding,7,18–20

empirical pseudopotential methods,1,3,22 and local density
approximation.8,24 The symmetry of the band-edge wav
functions has been discussed in detail by Ren7,9 and Delley
et al.8
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wherenm is the dimension of the subspace of the repres
tation m, g is the total number of operationsQ in the sym-
metry group,xQ

(m) is the character corresponding to the o

erationQ in the representationm, andÔQ is an operator tha
applies the transformationQ of the group to the wave func
tion c(r ). Then we calculate the matrix element

p~c,m!5
^cuP(m)
-

-
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be described by a single screening functionē(ur12r2u,R).
Third, we choose an analytical approximation f
ē(ur12r2u,R) which is described in Ref. 31.

Our foregoing argument suggests that the exchange in
action must also be screened. In the past, it was believed
r-
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ingly, any approximation for the screening functione(r ,R)
for a dot should converge to the form given by Resta for
values ofr when the dot sizeR goes to infinity. Figure 2
shows that our screening function has this property. In Fig
we have also plotted the distance dependent scree
function used by O¨ ḡüt et al.24 In that work, it is assumed tha
ē(r ,R)5e‘

dot(r ). This assumption gives a screening functi
that depends only on the interparticle distancer ~independent
of the size of the dot!. Figure 2 shows that in the approx

mation used by O¨ ḡüt et al. ē(r ) is only equal to the bulk
value when the interparticle distancer is infinity. For all
otherr, the screening function used by O¨ ḡüt et al. is signifi-
cantly different. It thus does not describe bulk screen
correctly.

D. Comparison of the present method with other approaches

The present method differs form the classical EMA tre
ment of free-standing QD’s~Refs. 2 and 26! in several ways:
~1! The present method provides the microscopic structur
the wave functions, not just the envelope structure.~2! It
does not require the wave function to vanish at the bou
aries of the QD.~3! The numerical solution of Eq.~1! allows
us to include unlimited multiband couplings.~4! The method
describes the true physical symmetries of the dot~recall that
even the most perfect Si QD does not have spherical s
metry, as assumed in the EMA, but ratherTd symmetry!.

As to comparison of the present method and tight bindi
we note that both methods can give equivalent results if
tight-binding basis is large enough. However~1!, the de-
scription of the wave function is variationally much mo
direct and flexible in the plane-wave pseudopoten
method; and~2! while the position-dependent wave functio
are in general not accessible to a tight-binding model~only
the expansion coefficients are!, yc-bindin.8(yc-b.2i z6ver)]TJ
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FIG. 3. ~Color! Calculated wave functions, depicted along the
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Figure 4 shows the calculated single-particle energ
compared with the empirical tight-binding results of Deler
et al.37 and Ren.7 This figure shows a very good agreeme
with the calculation of Delerueet al.37 The agreement with
the calculation of Ren is not as good. The difference betw
the calculations of Ren and those of Delerueet al.37 is that
the former uses a smaller set of adjustable matrix elemen
the empirical tight-binding Hamiltonian.

Also shown in Fig. 4 are the recent experimental data
van Buurenet al.,17 which fall well below all calculated and
measured values~see Fig. 5 below!. Since the quantities
measured in this experiment are very different from stand
measurements,10,11 we will review them, so as to establish
there is a relationship with calculated quantities. van Buu
et al.17 measured the shift in the energy of the conductio
band minimum from the dot to the bulk, i.e.,

D«CBM5«CBM
dot 2«CBM

bulk , ~18!

and the valence-band shift
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D«VBM5«VBM
dot 2«VBM

bulk . ~19!

The band gap of the dot was thus

«g~dot!5«g~bulk!1D«CBM2D«VBM . ~20!

To obtain D«CBM , van Buurenet al. measured the differ-
ence between 2p→CBM core-level absorption in the dot an
in the bulk:

D«CBM5DEdot~Si2p→CBM!2DEbulk~Si2p→CBM!,
~21!

whereas to obtainD«VBM , they combined VBM photoemis
sion with Si2p photoemission, i.e.,

D«VBM5@DEdot~VBM→vac!2DEdot~Si2p→vac!#

2@DEbulk~VBM→vac!2DEdot~Si2p→vac!#.

~22!

In Eq. ~21!, DEdot(Si2p→CBM) is the energy difference be
tween a dot with an electron in the CBM and a hole in its 2p
core level and a dot in the ground state. In Eq.~22!,
DEdot(VBM→vac) is the ionization energy of the dot VBM
andDEdot(Si2p→vac) is the ionization energy of the dot 2p
core level.

It was already noted by van Buurenet al.17 that themea-
suredsingle-particle gap« ,D,
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obtained using the configuration-interaction method
scribed in Sec. II B. The detailed structure of the excit
multiplet will be described in the next section. In Fig. 5, fu
symbols correspond to experimental results and open s
bols correspond to theoretical predictions. We see an ex
lent agreement between our results and the recent pho
minescence~PL! data of Wolkin et al.10 on oxygen-free
samples. We also show theabsorption data of Furukawa
et al.,11 used in the past to compare with theory.24 The
absorption-determined gas is much higher than the
determined gap for the following reason. For indirect-g
bulk semiconductors absorption does not give reliable va
for the lowestgap~because of the small intensity!
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the ordering of the energy levels and they introduce ene
correction on the order of 1 meV only.

Because the lowest energy exciton hasA1 symmetry, the
exciton is dark, which results from both the exchange int
action and the direct Coulomb contribution of the Coulom
interaction. Therefore, an exciton in the ground state ha
flip the spin and also has to change the orbital symmetr
order to recombine in a dipolar transition. That means t
the exciton transition is forbidden both by spin and orbi
symmetry. However, spin-orbit coupling, which is not i
cluded in the present calculation, can partially mix sing
and triplet states.

Another example of dark exciton is shown in Figs. 7 a
8 for a much smaller dot. The QD has 211 Si atoms w
additional 140 H atoms on its surface. The effective radius
the Si dot isR510.03 Å. The symmetry of the VBM for this
dot is t1, whereas the CBM ist2 ~see Table II!. In the ab-
sence ofe-h interaction @Fig. 7~a!#, this t13t2 exciton is
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allowed state~i.e., 1T2), and emits from the lowest-energ
triplet ~e.g., 3A1
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els of different symmetry could be mixed. A comparis
between optical experiments and our theoretical res
seems to show that the Franck-Condon shifts are small.
cordingly, we suspect that additional splittings or mixin
due to lattice distortion should be small compared to
Coulomb or exchange splittings.

IV. SIZE DEPENDENCE OF THE SINGLE-PARTICLE
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D J̄C~R!5b/Rg. ~32!

The form of Eq.~32! is also used to obtain the fitsK̄C(R),
andDK̄C(R) of Eqs.~29! and~30!. Table III gives the values
of the exponentg obtained from the fittings.

The first observation is that the exponent obtained for
size scaling of the direct-screened Coulomb energyJC
;R21.49 is larger than the one obtained in simplified mod
that use a size-independent screening constant and the E
J;R21. Note from Eq.~9! that the scaling ofJ depends on
the wave function structure and on the scaling ofē(r ,R). In
our calculation, the wave function is not constrained to
zero at the surface of the dot, which is the usual bound
condition for the envelope wave function in free-standi
QD’s. This leads to areduced48 electron-hole binding en
ergy, so the unscreened Coulomb energy scales
J(unscreened);R20.82. On the other hand, ourē(r ,R) de-
pends on the dot size being smaller than theR
e
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infinite potential barrier approximation were used. Th
nonparabolicity of the bulk band reducesn.

V. CONCLUSIONS

We have found that Coulomb interactions are very imp
tant in determining the symmetry of excitons in quantu
dots made of a bulk indirect-gap material. In particular,~1!
direct Coulomb interactions are able to split the energies
excitons that have degenerate single-particle energies~2!
When the symmetry of the CBM ist2, the direct Coulomb
interaction lowers the energy of a dark exciton below
optically active ones.~3! Exchange corrections raise the e
ergy of singlet states; because exchange splittings are di
ent for each exciton symmetry, the ordering of symmetrie
altered by the exchange interaction. In general, the excha
splitting is smaller forT singlets than forE or A1, which
lowers their energies below the other singlets. But, theT2
singlet remains at higher energy than theT1. ~4! When the
symmetry of the CBM is nott2, the lower energy excitons
haveT2 symmetry. Thus, when the CBM symmetry is nott2,
the lowest exciton is spin-forbidden only.~5! The hole wave
function of the lowest-energy exciton belongs to thet2 sym-
metry even in some cases in which the symmetry of
,
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VBM is t1. This is due to the fact that, for small dots, th
electron-hole direct Coulomb attraction is significantly larg
when the hole ist2 than when it ist1. ~6! We find that our
dark-bright excitonic splitting agrees very well with the e
perimental optical data of Calcottet al.41 and thermal data
Kovalevet al.42 The agreement is not as good with the the
mal data of Calcottet al.41 and Brongersmaet al.43 Finally,
~7! in contradiction with simple textbook arguments, w
have found that the relevance of the Coulomb direct inter
tion, exchange interaction, and correlation effects increas
compared to the single-particle energy splittings for sma
dots. This effect is a consequence of a realistic descriptio
the dot potential and the interparticle screening.
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good to describe the surface region~i.e., when the distance from
one particle to the surface of the dot is on the order ofr‘).
Nevertheless, the wave functions are strongly localized in
interior of the dots and, therefore, any correction introduced
the surface must be small.
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