

Point-ion versus density functional calculations of electric field gradients in ordered GaInP₂

Su-Huai Wei and Alex Zunger

National Renewable Energy Laboratory, Golden, Colorado 80401

~Received 29 January 1997; accepted 1 May 1997!

We investigate whether the electric field gradient ~EFG! at an atomic site in the unit cell of a periodic solid can be modeled via the electrostatic field gradient set up by atomic *point charges* outside that site. To test this approach we contrast the EFG predicted by such point-ion models for long-range ordered GaInP₂ alloys with the results obtained from self-consistent all-electron calculations in the local density approximation ~LDA!. We first tested our LDA approach for $ZnAl₂O₄$, for which experimental data exist, finding the quadrupole coupling constant Q_{cc} ²⁷Al! 53.94 MHz, compared with the measured value of $\sqrt{Q_0}$ 53.68 MHz. Applying next the LDA approach to perfectly ordered $GaInP_2$ -for which experimental data do not exist!, we find the LDA quadrupole coupling constant Q_{cc} 524.83, 22.84, and 13.08 MHz for ⁶⁹Ga, ⁷¹Ga, and ¹¹⁵In, respectively. We further find that more than 95% of these EFGs originate from the anisotropic electron charge distribution *within* a small sphere of radius ;0.2 Å about the respective atomic site. Hence, the point-ion model significantly underestimates the magnitude of the EFG -and in some cases also gives an incorrect sign!. The point-ion model also fails in reproducing the relative trends in the EFG as the crystal structure changes. We conclude that the point-ion model is not a viable alternative to calculate EFG in periodic covalent solids. © *1997 American Institute of Physics.* @S0021-9606~97!50930-5#

I. INTRODUCTION

Substitutional solid solutions $A_{12x}B_xC$ of fourfold coordinated covalent semiconductors *AC* and *BC* ~e.g., GaAs, GaP, InP, etc.! are rarely random.¹ The two leading forms of deviation from random are ''short-range order'' ~where the number of local $A-A$, $B-B$, and $A-B$ pairs is different from what random statistics would grant! and ''long-range order'' ~where *A* and *B* order crystallographically!. Spontaneous, CuPt-like long-range ordering of III-V semiconductor alloys¹ ~e.g., $Ga_{12x}In_xP$, $Al_{12x}In_xAs!$, has been widely observed in vapor phase growth. This ordered phase consists of alternate cation monolayer planes $A_{x1h/2}B_{12x2h/2}$ and $A_{x2h/2}B_{12x1h/2}$ stacked along the @111# direction, where 0 $\langle h \rangle$ is the long-range order parameter.² Perfect ordering (h51) corresponds to successive planes of pure *A* followed by pure *B*, etc.

The interest in atomic-scale deviations from randomness

about each atom, and the interstitial region between the atoms. The total ~electrons and nuclei! charge density ^r~**r**! in the solid is expanded as

$$
r-r!5\begin{vmatrix} S & r_{lm} \cdot r! Y_{lm} \cdot \hat{r}! & \text{inside the MT spheres,} \\ l,m & \text{5}r_{\text{G}}e^{i\text{G}\cdot\text{r}} & \text{in the interstital region} \\ G & & & & & & & & \\ \end{vmatrix}
$$

For a given total charge density ^r~**r**!, the Coulomb potential of the crystal is obtained by solving the Poisson's equation using a method proposed by Weinert.¹⁶ The resulting Coulomb potential $V_{\rm C}$ 5*V*(**r**) is expanded in analogy with Eq. ~3! as

$$
V-r!5\begin{vmatrix} S V_{lm} - r! Y_{lm} - \hat{r}! & \text{inside the MT spheres,} \\ \frac{l,m}{S V_{\mathbf{G}}e^{i\mathbf{G}\cdot\mathbf{r}}} & \text{in the interstitial region} \\ G & \text{if } \frac{l}{\mathbf{G}} \end{vmatrix}
$$

Given the Coulomb potential $V(\mathbf{r})$, the electric field gradient ~EFG! tensor V_{ij}^a at the

ventionally, one orders the Cartesian components according to their magnitude so that $V_{z_8}Z_8U$. $UV_{y_8}Y_8U$. $UV_{x_8}Y_8U$. Thus, the EFGs are usually specified by just two parameters: the principal component V_{z8z8} and the anisotropy parameter

$$
15 - V_{x8x8} 2 V_{y8y8} 1/V_{z8z8}, \t\t -10!
$$

where $0, 1, 1$.

Before performing the EFG calculations for the CuPt ordered structure of $GalnP_2$, we tested our procedure by calculating the Al EFG in $ZnAl_2O_4$. We chose this system because accurate experimental data^{18–20} are available for comparison.

 $ZnAl₂O₄$ has the normal spinel structure. The Al atoms are located at the octahedral sites with a local trigonal (D_{3d}) symmetry. Hence, the EFG at the Al site is axially symmetric (150) with the principal component V_{z8z8} oriented along the @111# direction. We calculated the EFG of Al in $ZnAl₂O₄$ at the measured structural parameters *a* 58.0813 Å and u 50.3887. The calculated V_{z} _{28*z*8} 520.2390 Ry/bohr² is in good agreement with the experimentally measured value^{19,20} of V_{z8z8}^{exp} 50.2233 Ry/bohr², and is also in good agreement with the recent first-principles all-electrons Hartree–Fock cluster calculations of Mitchell

et al.,¹⁸ who find V_{z8z8} 5 20.2102 Ry/bohr². This test demonstrated that it is possible to obtain reliable EFG from firstprinciples LDA band structure calculations.

In the study of GalnP_2 , a local orbital extension¹² is applied to the full-potential LAPW method. Local orbitals are used to treat accurately the extended Ga 3*d* and In 4*d* semicore states. We use the Ceperley–Alder exchange correlation potential²¹ as parameterized by Perdew and Zunger.²² Core states are treated relativistically using a spherical approximation ~so they do not contribute in this approximation directly to the EFG!, while the valence states are treated semirelativistically with the full potential. Highly converged basis sets with a cutoff energy of 19.3 Ry is used ~corresponding to ;230 LAPW basis functions per atom!. The Brillouin-zone integration is performed using special *k*-points corresponding to the ten special *k*-points in the zincblend structure.²³

III. RESULTS AND ANALYSIS

A. First-principles LDA calculations

The equilibrium lattice parameters and cell-internal crystallographic parameters of the ordered $GaInP₂$ were determined by minimization of the total energies. The calculated structural parameters of CuPt ordered $GalnP₂$ are given in Table I. In this ordered structure there are two chemical types of cations ~Ga and In! and two crystallographic types of anions inside the trigonal primitive unit cell. Each cation is surrounded by four nearest neighbor ~NN! P atoms. One anion P is surrounded by three Ga and one In atoms @denoted as $P-Ga_3In!/$, while the second P is surrounded by one Ga and three In atoms @denoted as $P\text{-Galn}_3!$ #. All atoms have locally a trigonal (C_{3v})

$$
V_{z8z8}^{\text{sphere}} - R! \, 5 \left[\frac{4p}{5} \right]^{1/2} \left[\frac{R}{\sigma} \, \frac{r_{z8z8}}{r^3} \, r^2 \, dr \right] \tag{11}
$$

Here the relation between r_{ij} and $r_{2,m}$ is the same as that between V_{ij} and $V_{2,m}$ given in Eq. -7!. Figure 1 shows $V_{z_8^{\text{sphere}}}(R)$ as a function of the sphere radius *R* for the four atom types in the GaInP₂ unit cell. The values of the *total* $V_{z\alpha z\beta}$ are shown on the right hand side of Fig. 1 as solid dots. The difference between the total $V_{z_0^2z_0^8}$ and $V_{z_0^2z_0^8}^{\text{sphere}}(R)$ is $V_{z8z8}^{\text{lat}}(R)$. We see that *most of the EFG comes from the anisotropic charge distribution of the electron inside a sphere radius* R_0 *of about 0.4 bohr.* Since the core orbitals are assumed in our calculation to be spherically symmetric, the entire EFG results from the valence orbitals.²⁴ The contribution to the EFG of charges *outside* R_0 is very small ~Fig. 1! because of the $1/r^3$ dependence of the EFG to a point charge Eq. -11!#. We find that $V_{z8z8}^{\text{latt}}(R_0)/V_{z8z8}$, 4%.

Our calculated $V_{z_0^2z_0^2}$ can be used to compute the nuclear quadrupole coupling constant²⁵ $Q_{cc} \bar{S} e^2 q Q$, where *eq* $5V_{z8z8}$, and *Q* is the quadrupole moment of the nucleus. Using the values²⁶ of $Q50.17$, 0.10, and 0.81 barn for ^{69}Ga , ^{71}Ga , and ^{115}In , respectively, we find the LDA values of the quadrupole coupling constants

$$
Q_{cc}^{-69}
$$
Ga! 5 2 4.83 MHz,
\n Q_{cc}^{-71} Ga! 5 2 2.84 MHz,
\n Q_{cc}^{-115} In! 5 13.08 MHz

for perfect ordered GalnP_2 . ³¹P has no quadrupole moment, so $Q_{\text{cc}}({}^{31}P)$ is zero.

B. Simple point-ion models

Our first-principles calculated EFG results can be compared with those obtained from simple model calculations. In particular, we will study the ionic model of Mao *et al.*⁷ In this model, the EFG on a nuclear site is calculated from point-ion electrostatic potentials of surrounding atoms. Following Mao *et al.*, we use the Harrison's bond-polarity model^{7,27} to assign point charges on each atomic site. This gives Q_{ion} -Ga! 51.08 *e* and Q_{ion} -In! 51.32 *e*. Since there are five types of P atoms in the $Ga_{12x}In_xP$ alloy ~depending on the P nearest neighbor coordination shell $Ga_{42n}In_n$, where $n \cdot 50$, 1, 2, 3, and 4!, we have five $Q_{\text{ion}}(P_n)$ values. In Harrison's model they are 21.08, 21.14, 21.20, 21.26,

and ≥ 1.32 *e* for $n \leq 0, 1, 2, 3$, and 4, respectively. The pointion EFG at an atomic position **r**5**0** due to all ions outside the origin can be obtained as

$$
V_{ij}^{ion} 5 S_a Q_{ion}^2 3 x_{a,i}^2 2 r_a^2!/r_a^5 \text{ for } i 5 j,
$$

$$
V_{ij}^{ion} 5 S_a Q_{ion}^2 3 x_{a,i} x_{a,j}/r_a^5 \text{ for } i \text{D} j.
$$

Table II shows our calculated point-ion model EFG for CuPt ordered $GalnP_2$ using Eq. $-13!$. Two results are shown in Table II: First, when the summation over a in Eq. $\text{-}13!$ is

C. Relative EFG of two structures

While the previous section showed that the point-ion model captures only a small piece of the total EFG of a given crystal structure, one might wonder if it correctly predicts the *trend* in EFG between different structures. If it does, it could still be used to compare, e.g., ordered versus disordered alloys using the Sternheimer factor.²⁵ To test this we have compared the calculated point-ion EFG of two structures to the values obtained by the LDA calculation. We selected the Z2 structure, which is a $-2,2!$ superlattice along the $@001#$ direction. There are three types of P atoms in the Z2 structure: P-Ga₄!, P-In₄!, and P-Ga₂In₂!. The first two types of P atoms have local D_{2d} symmetry, so the principal axis is along the $@01#$ direction and 150 . On the other hand, $P -$