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In this case E1 and E2 are degenerate, while E3 is sep-
arated &om E1 and E2 by the crystal field splitting
6osoi(e), which is given by

SBoo, = 3b„[e„——e~~] .

For (111) strain we have from Eq. (2) e = e»
e„and e „=e„, = e, , so the second term in Eq. (6)
vanishes, and the Hamiltonian becomes

( 0
+ +alii(e)

( —1 —1 0

Again, in this case E1 and E2 are degenerate while E3 is
separated Rom E1 and E2 by the crystal field splitting
b, iii(e), which is given by

3~3d1Icap (10)

The solutions of H give three energy levels, E1,E2,
and E3 for each strain. As will be illustrated next, this
Hamiltonian can be further simplified for strain parallel
to the high symmetry [001] or [111]directions.

For (001) strain we have from Eq. (2) e = e» g e„
and e „=e„, = e, = 0, so the third term in Eq. (6)
vanishes. The Hamiltonian becomes

B. Pure atomic ordering

It is now known that vapor-phase growth of most
III-V zinc-blende semiconductor alloys results in sponta-
neously ordered structures. Most of these ordered struc-
tures can be characterized as superlattices. For example,
the ordered Cupt-like structure is an alternate mono-
layer superlattice along the G,s

s
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P(x, rl) = P(x, o) + rl' [P(X,1) —P(X,0)], (12)

provided that the property can be well expressed in terms
of single-site and pair interactions.
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In our definition e is negative (positive) for in-plane com-
pression (tension). From Eq. (17) the conduction-band
energy relative to the center of the top valence bands is
given by

E,(e) = E,(0)+2a e . (22)
11

The Hamiltonian for the top of the valence states can
be obtained by combining Eq. (7) with Eq. (15), i.e. ,

1H„=—
3
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where the crystal 6eld splitting is

~S ( ) = 3bC11+ 2| 12

11
(24)

Diagonalization of Eq. (23) gives three spin degenerate
eigenvalues of the in-p/ane light-hole (lh) [I's„, (j
3/2, mi = +3/2)], heavy-hole (hh) [I'r„, (j = 3/2, m& ——

+1/2)], and spin-orbit split-off (SO) [I'r„, (j = 1/2, m@ ——

+1/2)] states. Here, we use the notation of Ref. 21. Note
that along the [001] direction the roles of light-hole and
heavy-hole are reversed. Explicitly,

E'"() = —3[&' +&'-()]1

E'"() = -6[&"+&o'o ()]
1

~SO + ~S ~ 2 QSO~S

E (e) = ——[6 + b,ooi(e)]
1

~SO + ~S ~ 2 ~SO~S

For systems

with
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ture elastic constants C;~ and deformation potentials a
and b for the III-V semiconductor compounds GaP, InP,
GaAs, and InAs. Using Eq. (28) we give also n and P
for the four compounds show in Table I. We have also
calculated o. and P directly from Eqs. (26) and (27) us-
ing the first-principles linearized augmented. plane wave
(LAPW) method within the local density approxima-
tion (LDA). The calculated T = 0 values ct.1,DA and
Pr, DA are given in Table I. We find that the calculated
I.DA values are systematically smaller than the exper-
imental values measured at room temperature. This
could be due to the strong temperature dependence of
the band-gap deformation potential. For example, for
GaAs, a at T = 120 K is about 3 eV smaller than at
room temperature. This, in turn, will reduce o. and P by
the same magnitude
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spin-orbit splitting we use the bowing 6~so ———0.02
eV, while for the direct band gap the bowing
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FIG. 7. Band-gsp reduction b,E~ [g, e(z)] = E~ [il, e(z)]
E~[0—, 0] of the strained Gs Ini, P alloy as s function of

(s) composition z snd (b) long range order parameter g. The
experimental data of Ref. 35 are plotted as solid dots in (b).
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FIG. 8. Valence-band splitting RE~2 of the strained
Gs Ini P allay as s function of (s) composition z snd (b)
the long range order parameter g. The experimental data of
Ref. 35 are plotted as solid dots in (b).

This strain e(z) is a function of the film composition z,
and so are the other composition-dependent properties
P(z) for the strain-free random alloy. We use Vegard's
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strain-free
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6' ) 0. We thus have the I 6, —I'6„and the I 6, —I'7„ tran-
sitions. For pure (001) strain both transition
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(v) Optical transition intensity analysis can be used to
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