Electronic Structure Pseudopotential Calculations of Large (~1000 Atoms) Si Quantum Dots

Lin-Wang Wang and Alex Zunger*

National Renewable Energy Laboratory, Golden, Colorado 80401 Received: September 30, 1993; In Final Form: December 15, 1993*

	The electronic structure of quantum dots containing $N \ge 1000$ atoms is difficult to calculate by conventional molecular methods since the effort scales as N^3 . Our newly developed method allows calculation of eigenstates
a A	
NTN .	
1	
4) 	
*	
),	
4 	
6	

	Most of these difficultion can be a	manna hutha ampirical	TADIE 1. Composito	on of the Si Bully Band Struct	maa and
-					
T. H.	J				
·					
'					
, •					
Ĩ					
a .	1 1				
<u></u>					
۱ م <u>ا</u>					
1					

2160 The Journal of Physical Chemistry, Vol. 98, No. 8, 1994

shape of the quantum dot does not change. The precise relaxation of the quantum dot surface atoms is taken from data on these three primary surfaces of H-covered Si films. The reconstructed

Wang and Zunger

•			
A			
·			
-			
-			
_	-		
al.			
-,			
3			
1			
<u> </u>			
	<u> </u>		
1			

Structure of Large Si Quantum Dots

The Journal of Physical Chemistry, Vol. 98, No. 8, 1994 2161

different treatments of the surface H potentials: In ref 38, the energy levels of the SiH₄ molecule are fitted to give the matrix elements of the TB Hamiltonian. We have tested this procedure using EPM and find a similar surfacelike LUMO state. However, we feel that a SiH₄ molecule is not an adequate model for H-covered Si surfaces. On the (001) film surface, there are two H atoms from neighboring H:Si:H groups which can be quite least that this instant is that the short is the SiH medua

, · · · · · · · · · · · · · · · · · · ·		
τ. Γ		
}		
Į.		
· }		
-		
π		
.		4
· · · · · · · · · · · · · · · · · · ·		
- 12 		:
ч		
r		
r		
t _e		
- <u></u>		
- y.		

Wang and Zunger

2.5 2.5 2.0 Current result with Coulomb term: - > - Experiments: • , • , • , •
`

Structure of Large Si Quantum Dots	The Journal of Physical Chemistry Vol 98 No. 8 1994 2163
, , , , , , , , , , , , , , , , , , ,	

Û

lifetimes for these two systems are very close, within a factor of 2. The fact that the gap of a dots is larger than that of the wire is consistent with the larger quantum confinement for finite L_z (i.e., box). However, the nearly identical radiative lifetimes of these two systems is surprising given that in the wire $k_z = 0$ for the HOMO and LUMO while in the box $k_z \neq 0$ for both of them. This implies that, in this case, the radiative lifetime is mostly determined by the x, y directions, while the z direction has little effect.

IV. Conclusions

We have used the empirical pseudopotential method to calculate

A L		
)		
- <u>1100-</u>		
<u>, , , , , , , , , , , , , , , , , , , </u>		
22		
A D		

τ.	
الم	
· · · · · · · · · · · · · · · · · · ·	
2 4	