

Citation: Applied Physics Letters 64, 3545 (1994); doi: 10.1063/1.111219 View online: http://dx.doi.org/10.1063/1.111219 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/64/26?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in Valence band spectroscopy in V grooved quantum wires Appl. Phys. Lett 69, 2965 (1996); 10.1063/1.117745

Intersubband relaxation time in the valence band of Si/Si1–x Ge x quantum wells Appl. Phys. Lett. 69, 3069 (1996); 10.1063/1.116842

Impurity band conductance through oxygen vacancy donor states in bismuth iron molybdate J. Appl. Phys. 79, 7703 (1996); 10.1063/1.362435

Modal analysis of optical guides with two dimensional photonic band gap boundaries J. Appl. Phys. 79, 7483 (1996); 10.1063/1.362419

Energy gap of nanoscale Si rods J. Appl. Phys. 79, 3619 (1996); 10.1063/1.361416

Pressure dependence of the band gaps in Si quantum wires

Chin-Yu Yeh, S. B. Zhang, and Alex Zunger

National Renewable Energy Laboratory, Golden, Colorado 80401

(Received 25 January 1994; accepted for publication 14 April 1994)

The pressure coefficients a of interband transitions in (001) silicon wires are calculated using a plane-wave basis and carefully fitted empirical pseudopotentials. We find purely red shifts (a < 0). Their magnitudes as well as changes with wire sizes can be interpreted in terms of the "truncated

conduction bands along the 1-A line.

The pressure dependence of the photoluminescence (PI)	wires are calculated here using the empirical providenciantial
from porous SI has recently been measured by a number of $\frac{1-6}{320}$. The execute summarized in Table Labour the following the following statement of the	method (EPM). All danging bonds are ned up by hydrogen
(i) As the pressure increases above ~ 25 kbar the PL	or, while the G_1 -right distance is that of shahe. The write atoms are described by local pseudopotentials, simultaneously fit ¹² to the Si hulb hand structure as less the (001) matches and
coefficient of $a \sim -3$ meV/kbar. This value is more negative than the value for the indirect gap of crystalline Si (-1.41	function. Using this Si potential we then fit the hydrogen potential to reproduce the observed chemisorption-induced

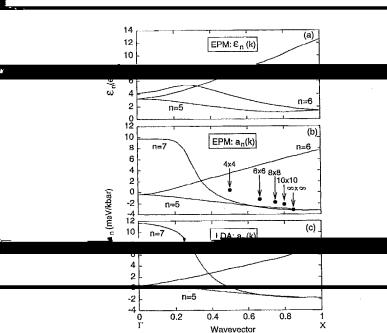
TABLE I. Observed pressure coefficients a of photoluminescence energy in porous Si. Values in square brackets denote experiments in which the pressurizing liquid medium was alcohol.

Authors and Reference	P=0 peak (eV)	ΔP (kbar)	$a_{\rm wirc}$ (meV/kbar)
Camassel et al. ^a	1.8	0-10	-1.1 to -3.2
Zhou et al. ^b	1.85	0-20	[+4.0 to +9.0]
Sood et al. ^e	1.68 - 1.80	0-70	-3 to -4
Zhao <i>et al.</i> ^d	1.74-1.86	0-26	[+6.2 to +6.5]
Zhao <i>et al.</i> ^d	1.74-1.86	≥30	[-2.8 to -4.1]
Ookubo et al. ^e	1.77	0-40	-3.0 to -5.0
Ryan <i>et al.</i> ^f	1.85	0-25	[+7.0]
Ryan et al. [†]	1.85	25-80	[-2.0]

^cReference 3. ^dReference 4.

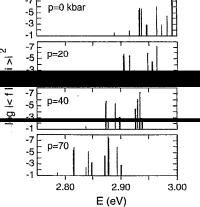
^eReference 5. ^fReference 6.

we excite higher energy bands in a given wire size [compare


decomposed into bulk wave functions $\phi_{n,k^*}(\mathbf{r})$ of band index

Our previous work showed that the quantization of particle

ments on porous S1 (Table I) where the pressure coefficient is <u>outside the range $a(Y_{-}) = -1.4$ and $a(\Gamma_{-}) = \pm 1$ of bulk values, our calculated result for the write range within the range of the calculated bulk values. These observations hold over when the uncerted w_{EPM} s are used. These trends in the calculated wire pressure coefficients</u>


where the amountum numbers for hands with one i

 $\mathbf{k}_{x}^{*} = \frac{j_{x}}{2\pi} \frac{2\pi}{(1,1,0)}; \quad \mathbf{k}_{x}^{*} = \frac{j_{y}}{2\pi} \frac{2\pi}{(-1,1,0)}$

 $\langle \psi_i | \phi_{n,k^*} \rangle$ We find that the wire CBM is composed predominantly from bulk states in the first and second conduction bands (*n*=5,6), evaluated at *k*^{*}. For example, in a 8×8 wire, about 78% of the CPM comes from the two lawset bulk conduction bands at $\kappa = 2\pi/a_0(0, 4, 0)$ while 90% of the valence band minimum (VBM) comes from the two highest

bulk valence bands at $k^* = 2\pi/a_0(0, \frac{1}{4}, 0)$. Because the projection coefficients are not sensitive to the pressure, Eq. (1)

FIG. 1. (a) Calculated dispersions of three lowest bulk Si conduction	i bands
obtained in the EDM (b) calculated EDM assessme apofficients of the	

three bulk bands; (c) same as (b) but using the LDA. The solid dots in part

5 (a) 6x6 wire (b) 10x10 wire	its orientation, shape, and size. (v) Since higher energy <i>wire</i> bands (β, γ, δ) are constructed from correspondingly higher energy <i>bulk</i> bands, their pressure coefficients are less nega-
$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Given the predicted off- Γ character of the wire CBM at ambient pressures, ¹⁰⁻¹³ the analogy ⁶ draw by Ryan <i>et al.</i> ⁶ between porous Si and the direct gap GaAs under pressure clearly does not hold. The confusion arises, in part, because both Sanders and Chang ¹⁰ and Buda <i>et al.</i> ¹¹ have incorrectly
$a^*=1.06(-2.2) \rightarrow \alpha$	terize their A-folded CBM. On the other hand, a molecular interpretation of the porous Si (e.g., siloxene) cannot explain
FIG. 3. Pressure dependence of the different groups of transitions $(\alpha, \beta, \gamma, \delta)$	that takes place in the pressure cell: Sood <i>et al.</i> ^{3,17} noted that the conventional methanol-ethanol mixture used as a
	alcohols as a pressure medium ^{2,759} but not in experiments
	we conclude that the predicted red shift is an intrinsic
$\frac{\partial \epsilon_i}{\partial P} \approx \sum_{n} \sum_{k^*} A_{n,k^*}^{(i)} ^2 \frac{\partial \epsilon_{n,k}}{\partial P}.$ (3) We thus interpret the calculated red shift of (001)- oriented wires with [110] surfaces as a manifestation of the analogous bulk properties along the $2\pi/a_0(0,1,0)$ direction in the Brillouin zone. The value of k^* having the largest pro- jection will be denoted k_{\max}^* . Analyzing our directly calcu- lated wire wave functions we find that as the wire size in-	 terms. We wish to thank V. Petrova-Koch for many helpful discussions. This work was supported by the Office of Energy Research (OER) [Division of Materials Science of the Office of Basic Energy Science (BES)], U. S. Department of Energy, under Contract No. DE-AC02-83-CH10093. ¹J. Camassel, E. Massone, S. Lyapin, J. Allegre, P. Vicente, A. Foucaran, A. Raymond, and J. L. Robert, in <i>Proceedings of the 21st International Con-</i>
The second of th	уу Zианана Анена на разуру, к. 25 г.н. кила ишта, Р. с. к. с. с. с. с. с.
conclude the following. (f) The culculated pressure coefficients for the larger wires approach the bulk value $a(\Delta_{1c})$ at	A. K. Sood, K. Jayaram, and D. V. S. Mathu, J. Appl. Phys. 72, 4963 (1992).
 approaches the CBM. (ii) The band edge pressure coefficients of small wires are <i>less</i> negative than a⁰(Δ_{1c}), since, by Eq. (3), the wire CBM represents a mixture of a few bulk states [n,k*), most of which have a_n(k*)>a(Δ_{1c}) [Fig. 1(b)]. (iii) The fact that the <i>observed</i> wire pressure coefficients (Table I) are often most negative than the (observed) a(Δ_{1c}) bulk value suggests either nonbulk (i.e., surface) or nonideality effects. (For example, the different compress- 	 Symp. 283, 127 (1993). ⁵ N. Ookubo, Y. Matsuda, and N. Kuroda, Appl. Phys. Lett. 63, 346 (1993). ⁶ I. M. Rvan, P. R. Wamslev, and K. L. Brav, Appl. Phys. Lett. 63, 2260 (1993). ⁷ (a) B. Welber, C. K. Kim, M. Cardona, and S. Rodrigues, Solid State Commun. 17, 1021 (1975). (b) E. Schmidt and K. Vedam, <i>ibid.</i> 9, 1187 (1971). ⁸ B. A. Weinstein, Phys. Rev. B 23, 787 (1981). ⁹ A. R. Goni, K. Strossner, K. Syassen, and M. Cardona, Phys. Rev. B 36, 1581 (1987).
shear that will split the wire VBM, pushing states further into	 P. Buda, J. Kohanon, and M. Parmeno, Phys. Rev. Lett. 69, 1272 (1992). ¹² CY. Yeh, S. B. Zhang, and A. Zunger, Appl. Phys. Lett. 63, 3455 (1993); J. Wellers and A. Zunger, L. Phys. Chem. 69, 2158 (4004). ²⁵ M. S. Hybertsen and M. Needles, Phys. Rev. B 48, 4608 (1993).
of our LDA-calculated pressure coefficients of bulk Si for off	(1984).
Smaller in absolute value than $a(\Delta_{1c})$. Thus if the emission is caused by intrinsic quantum confinement, we expect a small	¹⁷ J. M. Lauerhaas, G. M. Credo, J. L. Heinrich, and M. J. Sailor, J. Am. Cham. Soc. 114 , 1011 (1002)

This articles Phys. Lett., Vol. 64, No. 26, 27 June 1994 se of AIP content is subject to the terms at: http://scitation.aiyen, Zhang, and Zunger while 3547 to IP: 128.138.41.170 On: Tue, 14 Jul 2015 12:20:07