

Citation: [Applied Physics Letters](http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov) **63**, 1399 (1993); doi: 10.1063/1.109689 View online:<http://dx.doi.org/10.1063/1.109689> View Table of Contents:

Prediction of unusual electronic properties of Si quantum films

S. B. Zhang and Alex Zunger

National Renewable Energy Laboratory, Golden, Colorado 80401

(Received 3 May 1993; accepted for publication 1 July 1993)

Direct pseudopotential band structure calculations of thin Si(001) films reveal a number of

features that are unexpected on the basis of conventional quantum confinement models: (i) The energies of some valence-band states exhibit oscillations when the number of monolayers in the state of monol
In the number of monocolayers in the number of monocolayers in the second state of monocolayers in the state o

film changes from even to odd, (ii) certain film wave functions have a cosine (rather than sine) ing (iii) the energy of the ingliest occupied film state remains pinned at a $constant$ value for all even-layered film. We demonstrate

mension by vacuum. The qualitative features of their elec t_1 structure can be described by the effective structure \mathbf{a} . particle-in-a-box model.' This approach predicts that (a)

Free-standing quantum films are two-dimensional

effective-mass model which explains these results.

The film's energy eigenvalues ϵ_f vary i film thickness L as $\epsilon \propto 1/L^2$. (b) the film has a sine-type envelope function which guarantees that the wave functions vanish at the film's boundaries, and (c) the energies

of all levels

underlying approximations of the effective-mass model

niques, thus obviating the effective-mass approximation. This can be done by defining a "supercell" consisting of N_f layers of the film's material straddled on each side by N_y .

$\left[-\frac{1}{2}\nabla^2 + V_{\text{film}}(\mathbf{r})\right]\psi_f^{\text{direct}}(\mathbf{r}) = \epsilon_f^{\text{direct}}\psi_f^{\text{direct}}(\mathbf{r}),$ (1)

where ψ is expanded, e.g., in plane waves. The number N_v of vacuum layers is increased until the resulting energy spectrum f_{α} direct, becomes independent of N . We can struct $V_{\text{film}}(\mathbf{r})$ by a superposition of screened Si atomic

sites \mathbf{R}_i . Far outside the film $V_{\text{film}}(\mathbf{r})$ approaches the vacuum level, thus establishing the work function. We fit $V_{\rm Si}({\bf r})$ to the bulk Si band structure as well as to the film work function² Φ =4.9 eV. Equation (1) is solved by expanding the wave functions in a plane wave basis with a cutoff of 4.5 Ry. The bulk energy eigenvalues [in eV, relative to the bulk valence-band maximum (VBM)] at the symmetry points X_{1c} , L_{1c} , L_{3c} , and $\Gamma_{2'c}$ are 1.28 (1.13); 2.18 (2.04); 4.02 (3.9), and 4.11 (4.15), respectively, where the values in parentheses are experimental.³ Our primary aim is to compare our results with "surfaceless"

iterating the films potential to self-consistency as we do not <u>nyich to :</u> a ing p

(1) the potential $V_{film}(\mathbf{r})$ includes both the periodic part inside the film and the confining vacuum potential outside

1399

comparison requires that surface states, which could ap-

 α values have a parabolic n ($\kappa - \kappa_0$) / $2m$ and

discarded.

sults.

 (1) Even-odd oscillations: Figure 1 depicts the directly calculated [Eq. (1)] film eigenvalues at the VBM Inot in-

the conduction band minimum (CBM) as a function of the number N_f of Si monolayers. The dashed line depicts the predictions of the EMA. Note the marked even-odd oscil-

its effects by m^* , it misses this symmetry-mandated effect. (2) Cosine-type envelope functions: Figure 2(a) depicts the directly calculated film wave function for valence band

 $f=20$ of a 12-layer Si(001) film at the center of the film's

bulk

Direct

ΤC

 $\mathbf{1}$

 $\mathbf 0$

 $\overline{2}$

Energy(eV)

