

Citation: Applied Physics Letters 63, 1399 (1993); doi: 10.1063/1.109689 View online: http://dx.doi.org/10.1063/1.109689 View Table of Contents:

Prediction of unusual electronic properties of Si guantum films

S. B. Zhang and Alex Zunger National Renewable Energy Laboratory, Golden, Colorado 80401

(Received 3 May 1993; accepted for publication 1 July 1993)

Direct pseudopotential band structure calculations of thin Si(001) films reveal a number of

and (m) the energy of the ingliest occupied initial state remains planed at a constant value for all even-lavered film We demonstrate

61m

trania atructure and ha decombed by the affective

The film's energy eigenvalues ϵ_f vary monotonically with film thickness L as $\epsilon_{c} \propto 1/L^2$. (b) the film has a sine-type envelope function which guarantees that the wave func-

or an ievers depend on the min's thickness.

auantum

Free-standing.

Naturally, these predictions could reflect, in part, the underlying approximations of the effective-mass model TIMAN T

niques, thus obviating the effective-mass approximation. This can be done by defining a "supercell" consisting of N_f layers of the film's material straddled on each side by $N_{\rm e}$

$\left[-\frac{1}{2}\nabla^{2}+V_{\text{film}}(\mathbf{r})\right]\psi_{f}^{\text{direct}}(\mathbf{r})=\epsilon_{f}^{\text{direct}}\psi_{f}^{\text{direct}}(\mathbf{r}),$ (1)

where ψ is expanded, e.g., in plane waves. The number N, of vacuum layers is increased until the resulting energy spectrum { direct } becomes independent of N We con struct $V_{\text{film}}(\mathbf{r})$ by a superposition of screened Si atomic

sites \mathbf{k}_i . Far outside the film $V_{\text{film}}(\mathbf{r})$ approaches the vacuum level, thus establishing the work function. We fit $V_{\rm Si}(\mathbf{r})$ to the bulk Si band structure as well as to the film work function² Φ =4.9 eV. Equation (1) is solved by expanding the wave functions in a plane wave basis with a cutoff of 4.5 Ry. The bulk energy eigenvalues [in eV, relative to the bulk valence-band maximum (VBM)] at the symmetry points X_{1c} , L_{1c} , L_{3c} , and $\Gamma_{2'c}$ are 1.28 (1.13); 2.18 (2.04); 4.02 (3.9), and 4.11 (4.15), respectively, where the values in parentheses are experimental.³ Our primary aim is to compare our results with "surfaceless"

iterating the films potential to self-consistency as we do not wish to l de la

(1) the potential $V_{\text{film}}(\mathbf{r})$ includes both the periodic part inside the film and the confining vacuum potential outside

1399

comparison requires that surface states, which could ap-

ballus have a parabolic $n (\mathbf{K} - \mathbf{K}_0) / 2m$. (IIS-

discarded.

sults.

(1) Even-odd oscillations: Figure 1 depicts the directly calculated [Eq. (1)] film eigenvalues at the VBM [not in-

the conduction band minimum (CBM) as a function of the number N_f of Si monolayers. The dashed line depicts the predictions of the EMA. Note the marked even-odd oscil-

its effects by m^* , it misses this symmetry-mandated effect. (2) Cosine-type envelope functions: Figure 2(a) depicts the directly calculated film wave function for valence band f = 20 of a 12-layer Si(001) film at the center of the

FIG. 1. Size dependence of the highest valence-band and lowest conduction-band states.

_	j=0 1 2 3 4 5 6	The ZCS of Fig. 3 is a particular case of the cosine envelope function discussed above. Equation (5) shows that for $n \neq 1$ the solution $j=0$ (i.e., $k_z^*=0$) is allowed.
	0 n=34	Hence a film state for which $u_{n,k}^{R}(\mathbf{r}) \approx 0$ with $k_{z}^{*}=0$ gives from Eq. (2) $\chi_{\text{7CS}}^{\text{TC}}(\mathbf{r}) \approx u_{n,k}^{I}(\mathbf{r})$ having a constant envelope
	e) Abi	tion depicted in Fig. 3(b) can be described quantitatively in this fashion.
	-9 - U	The TC representation lead to another useful result: To within a good approximation one can guess the (non- surface state) eigenvalues of a film from the bulk disper-
<u>}</u>		
-		
	FIG. 4. Mapping of the directly calculated film eigenvalues onto those	$\mathbf{k}_{(001)}^{*} = \frac{2\pi}{0.0, \frac{2j}{2}}; 0 \le 1 \le 1_{\max} = N_f/2. \tag{9}$
	$ a_{n,f}(k_z^*) ^2$. Our central observation (verified in Fig. 4	Thus, $\epsilon_n^{\text{ourk}}[2\pi/a(0,0,2j/N_f)]$ approximates the zone-
,	conticily disconsi in the band index a and more meeter 1.*	
1 <u>****</u>	tanning in Ed. (0) lust a single dominant term with	merby xevere et a quantant min and no estemation. Repute
<u>.</u>		
	anu	intersections miss the directly calculated energies (solid
	$\frac{\text{direct}}{z}$ Thus, the TC approach predicts a one-to-one mapping be- tween the film energy eigenvalues $\epsilon_{\text{effect}}^{\text{direct}}$ and those of the	dots) gives the error in the TC approximation. The errors are small; hence, Eqs. (8) and (9) provide a natural clas- sification of (001) film eigenvalues in terms of bulk disper- sion relations. When the real $\epsilon_{n,k}^{\text{bulk}}$ has a parabolic disper-
- ,	, bulk , bulk	$E_{\text{E}} = (2) + h_{\text{E}} = E_{\text{E}} (2) +$
ş	is precisely the procedure followed empirically in earlier	(7) and (8) provide a simple alternative to the EMA for
	with those obtained in direct diagonalization. Figure 1 shows such a comparison for valence- and conduction- band eigenvalues, whereas Fig. 2 shows that the TC wave	of Energy, under Contract DE-AC02-83-CH10093.
	function [Eqs. (4) and (7)] constructed from the bulk	C. Derrold Weige Machinelin Andlin In Construction In the Machine in
	and are builded by the neurr planes of angle (1) rather than	^o See, J. K. Chelikowsky and M. L. Cohen, Phys. Rev. B 14 , 556 (1976).

74 - 71