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can be included in two ways: (a) Construct a giant su-

percell whose sites are occupied randomly [10, 11],or (b)
construct a smaller "special" structure 0., whose correla-
tion functions IIp (a, ) match those of
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FIG. 1. (a) VFF elastic energies for Gao 51no 5P with Lli
LRO as a function of order parameter g. The circles are
calculations on large supercells, the asterisk is the result for

SQS (ri = 1/2), and the solid curve is the prediction of the
simple formula of Eq. (9). (b) Elastic energies for Gai, In P
with Lli LRO parameter g = 1/2 as a function of composi-
tion 2:.

body interactions, are 0(rP) For allo.ys with x g 1/2,
the inversion
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& = (y + y')/2, q = y' —y, and the ordered reference
structure is o =(AIAs)„/(GaAs)„,with X = I/2. Such
alloy superlattices are often grown intentionally, but may
also occur unintentionally in the gro~h of monolayer
A1As/GaAs superlattices, if the layers are intermixed.
Figure 3 shows the predicted minimum-energy band gsp
for the monolayer [001] superlattice, over the entire range
of compositions {y,y'}. These predictions are made by
combining Eq. (9) with the experimental dependence of
the I', X, and I gaps of the Alq GazAs random al-

loy [17] and LDA-band-gap-corrected (using the aver-

age difference between the LDA and experimental gaps
for GaAs and A1As) pseudopotential calculations for the
gaps of the perfect (AIAs) q/(GaAs) q superlattice. The
line marked rl = 0 in the figure corresponds to the random
alloy as the composition is changed from AlAs to GaAs.
Along this line we have the well-known I'-X crossover
of the conduction-band minimum (CBM). The z = 0.5
line represents equal concentrations of Al and Ga for dif-

ferent values of the order parameter —ranging from the
random alloy (g = 0) at the center to the perfect mono-
layer superlattice (rl = 1) at opposite corners. Along this
line, the CBM changes from the I point in the random
alloy to the L point, with the crossover occurring near

q = 0.7. This X-I crossover has important experimen-

'-o
FIG. 3. Predictions for the minimum-energy band gap {in

eV) of a (Aiq „GasAs)q/(Alq „IGa„As)qsuperlattice using
Eq. (9).

tal consequences, since it will lead to an X-like CBM
in (A1As) z/(GaAs) & if the interfaces are not sufficiently
abrupt [18].
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