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l o w e s t  e n e r g y  a m o n g  a s m a l l  n u m b e r ,  O ( 1 0 ) ,  o f  i n t u i t i v e l y  s e l e c t e d  c a n d i d a t e  

s t r u c t u r e s .  W e  s h o w  h o w  c a l c u l a t i o n s  o f  t h e  t o t a l  e n e r g i e s  o f  O ( 1 0 )  s t r u c t u r e s  c a n  

b e  u s e d  i n s t e a d  t o  d e f i n e  a f i r s t - p r i n c i p l e s ,  m u l t i - s p i n  I s i n g  H a m i l t o n i a n ,  w h o s e  

g r o u n d  s t a t e  s t r u c t u r e s  o n  a f i x e d  l a t t i c e  c a n  b e  s y s t e m a t i c a l l y  s e a r c h e d  u s i n g  

l a t t i c e  t h e o r y  m e t h o d s .  T h i s  i s  i l l u s t r a t e d  f o r  t h e  i n t e r m e t a l l i c  c o m p o u n d s  C u A u ,  

C u P d ,  C u P t ,  a n d  C u R b ,  f o r  w h i c h  t i m  c o r r e c t  g r o u n d  s t a t e s  a r e  i d e n t i f i e d  o u t  o f  

m o r e  t h a n  6 5 , 0 0 0  p o s s i b l e  s t r u c t u r e s .  

1. I n t r o d u c t i o n  

Recent advances 1,2 in first-principles self-consist- 
ent implementations of the local density formalism 3 
have produced a wealth of information on the ground 
state properties of ordered intermetallic I and semicon- 
ducting 2 compounds. To find the stable crystal con- 
figuration, one repeats the total energy calculation for 
a few assumed crystal structures that by analogy with 
related compounds or by "chemical intuition" are ex- 
pected to be likely competitors for the stable ground 
state. Comparison of total energy vs volume curves for 
such a set of "intuitive structures" permits the identifi- 
cation of the stablest structure in this set and possible 
phase-interconversions among them. While generally 
successful,l,2 the predictive value of this approach does 
depend on one's ability to guess correctly at the.outset 
a canonical set of structures which includes the "win- 
ning" (minimum energy) configuration. One wonders, 
however, if a different, hitherto unexpected structure 
could have yet lower energy, or whether linear combi- 
nation of two other structures with compositions z~, 
and x# (and za  < z~, < z#)  could have a lower en- 
ergy than a (hence, a will disproportionate into a + 3). 
Addressing this problem, even for binary A,,Bra com- 
pounds on a fixed lattice requires, in principle, calcu- 
lation of the total energies of the 2 N atomic configura- 
tions for each type of lattice (fcc, bcc...). Even limiting 
N to O(1O) - O(102), this is a formidable task for first- 
principles electronic structure methods, s This problem 
can be circumvented to some extent by using simplified 
electronic Hamiltonians (e.g., minimal 
2.5type This This electronic per8.6b25.44 0 TD51 rg0.51 Tc0 Tw(the ) Tj15.12o80 0 TD1 1 1 rg0.64 Tc0 Twhe on 

by formidable replac.80 0 TD391 1 rg0.42 Tc0 Tw(total ) Tj212 0 TD1 1 1 rg0.48 Tc0 Tw2type total energy by 

phenomenological effective pair potentials. 5 It is the 
purpose of this paper to demonstrate how one can effec- 
tively perform such a ground state search among many 
[O(2 N)] potentia0any equimo- 

lax compounds exhibit at low temperatures a range 
of symmetriesS: CuAu has the fcc-based (L10) struc- 
ture, CuPd has a bcc-based (B2) structure, CuPt has 
a rhombohedral (Lll) structure, and CuRia does not 
exists (it phase separates into pure Cu + Rh) . We 
show that an extensive ground state search (of ~ 65,000 
configurations) within the local density forrnMism does 
predict in all cases the correct ground state symmetries. 
This opens a practical way for identifying stable crys- 
tal structures directly from first-principles calculations, 
without resort to coherent potential or tight-binding 
approximations. 

2. Approach 

Our approach is based on standard lattice theories 
of statistical mechanics,L s where a given 
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Si (+1 if occupied by B , - 1  if occupied by A), we define 
for each figure f in configuration a the spin product 
HI(a)  = SItS2t...Sk,. The energy E(~) of any lattice 
configuration can then be rigorously expanded 7 into an 
Ising-like series 

2 N 

E(a) = ~ l'I/(a) J! , (1) 
! 

where Jl is the energy of figure f ,  defined, through the 
orthogonality relationship, T by averaging over all the 
configurations as, 

2 N 

J1 = 2-~' ~ E(~) ni(~) • (2) 
a, 

These sums can be reduced by symmetry noting that 
for a space group operation ~ of the lattice, we have 
E(~a) = E(a) and II~l(~a) = Il l (a) ,  hence, from 
Eq.(2) J~!  = 3"/ so all ND! symmetry-related fig- 
ures have equal interaction energies. Consequently, the 
sum in (1) can be limited to the prototype (symmetry- 
unique) figures F: 

E(~) = N ~ Z)r fIF(~) J~ , (3) 
F 

CuAu CuPd CuPt 

Struc. LAPW Eq.(4) LAPW Eq.(4) LAPW Eq.(4) 

LI2 (AaB) -35.1 -38.2 -85.0 -79.2 -115.8 -112.7 

D022 (AaB) -30.8 -29.8 -75.5 -77.4 -96.7 -97.6 

~1 (A2B) 59.9 61.0 -36.4 -42.5 -40.8 -34.6 

Llo (AB) -33.4 -32.7 -75.9 -78.4 -83.3 -91.1 

LI~ (AB) 68.1 68.1 -66.8 -66.8 -111.9 -111.9 

"40" (A2B2) -15.2  -15.9 -76.4 -74.8 -63.8 -61.3 

Z2 (A2B2) 155.3 154.6 -4 .3  -3 .6  34.7 31.7 

f12 (AB2) 46.4 46.7 -48.6 -43.9 --31.2 -31.5 

D022 (AB3) -9 .1  -8 .7  -46.4 -47.7 -65.9 -69.8 

L12 (AB3) -16.1 -17.2 -53.4 -49.5 -96.3 -84.7 

r/,n,e|. 1.0 3.1 4.3 

~r~i.~d 15.2 12.2 4.8 
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ures, (ii) the pair terms (2,1), (2,2), (2,3), and (2,4) for 
1st, 2nd, 3rd, and 4th fcc neighbors (Sth in bcc), and 
(iii) the 3-body (3,1) and 4-body (4,1) terms [replaced 
by (3,2) and (4,2), respectively, for bcc structures]. As 
shown by connolly and Williams, ~ since rIF(s) and DR 
are known for such periodic configurations, H we can 
obtain the values of the NF functions {JR} from a 
least-square fit 9 of {E(s)} to Eq (3); the fit error (Ta- 
ble I) already provides some measure of the adequacy 
of the truncation. Note that since E(s) is obtained 
from a first-principles (LAPW) calculation in which 
all lattice sums are calculated to convergence, the ef- 
fective interactions Jl of Eq. (2) represent a renormal- 
ization of all potentially long range terms; J! is hence 
a sum of total energies, not an interaction potential, s 
Since E(s) is generally a function of volume H-12 V, 
the interactions J~ depend on V, too. It is useful (see 
below) to transform these { JF(V)} into another expan- 
sion in terms of volume-independent interactions Y~-. 
This can be done by the "e - G" expansion L1 in which 
we replace the equation of state E(~, V) for structure 
a by the function U(o, V) which has the same value 
for the first three volume derivatives at equilibrium as 
E(a, V), yielding 

E[~, V(~)] ~ Vie, V(~)] = G(~)+N ~ Z)F fIF(~) VF, 
F 

(4) 
where G(z) is a closed-form function 1. of the alloy vol- 
ume V(x), the bulk modulus B(x) and its pressure 
derivative B'(x). [Reference 11 illustrates that Eq. (4) 
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reproduces Eq. (3) with excellent precision]. Equation 
(4) shows that the excess energy of any configuration 
a can be separated into a configuration-independent 
"elastic energy" G(z) of the medium (zero only when 
all atomic species have the same molar volume) plus a 
sum of chemical "substitution energies" (the standard 
generalized Ising problem 8) which represents configu- 
rationally dependent fluctuations about this medium. 
The relative stability of phases at the same z is hence 
determined by their substitution energies, while G(z) 
controls disproportionation of a single phase into mul- 
tiple phases of unequal molar volumes. In many pre- 
vious studies, size molar many volumes. of s t a b i l i t y  a t o . 6 0 e s  

Table II. Using different combinations of 10 structures {s} (out of 12, see Table 
I) we calculate G(x) of Eq.(4), then fit E(s) - G(x,) to find different sets of 
.N'F = 8 interactions {12F}. These are then used to predict via Eq.(4) the energies 
AH,, of the two remaining ordered structures s'  (not included in the fit), and the 
energy/XHIz of the random alloy at x = 1/2. This Table gives (in meV/atom) the 
average ] LAPW - predicted I error for AHe ("AHs'error") and the predicted 
AHR obtained from different sets {PF}. The last row gives the standard deviations 
7;. The same procedure yields for CuPt ~ = 2.2 and 0.9 meV for unrelaxed and 
relaxed &HR. Note that even using only 10 structures, the error in predicting the 



586 A FIRST-PRINCIPLES 

cubic fee or bcc sites) and for ~relaxed" geometries (en- 
ergy minimized with respect to all structural degrees 
of freedom consistent with their respective space group 
symmetry).  

3. R e s u l t s  

Table I shows that  the cluster expansion with 
N,  = 12 structure and NF = 8 figures describes the 
energies of the unrelaxed ordered structures to within 
the underlying LAPW accuracy, l° Hence, we will use 
this expansion to search for the ground state among 2 N 
lattice configurations. Table II shows a robust predic- 
tion of the energies of the random alloy (both relaxed 
and unrelaxed) using different sets of {PF} and that 
the energies of unrelaxed ordered structures are pre- 
dicted for these systems to within 10 meV/atom even 
if we use N,  = 10. To meet this criteria it was nee- 
essa.,'y to extend the interactions up to the 4th and 
5th j 42g0.72 Tc0 Tw(the j 27.60 0 TD1 1 1 ructure )  rgmeV/atom 
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(hence, L l l  ordering is disallowed) and take G(x) = 0 
(hence, neglect strain energies resulting from A - B 
size-mismatch). Such simplifying approximation can 
not he used here. We have hence conducted a ground 
state search of 2 8 lattice configurations using our full 
{~,,~} sets, but  limiting N to 16 fcc (bcc) sites per 
primitive unit cell. Structures with larger cells could 
be missed. We hence search 2 ~e .~ 65,000 structures 
for each compound. 

Our predicted T = 0 GSL's are shown in Fig. 1; 
they consist of 
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Fig. 1: Ground state lines (solid line segments connecting diamond-shaped sym- 
bols) for Cu-based intermetallics. The symmetries are obtained from the unrelaxed 
cluster expansion, while the energy values displayed (except D1 and D7 for CuPd) 
are from relaxed LAPW calculations. For CuRh (not shown) the ground state line 
gives only phase separation. Open symbols shows the LAPW energies of struc- 
tures that are above the ground state line. The cluster expanded values D1 and 
D7 for CuPd are slightly above the line connecting the end point and/'.12 (LAPW 
values). Also shown is the calculated a~d measured ~a free energy AF(z ,T)  of 
the disordered alloys at T = 1350, 1350, and 800 K for CuPt, CuPd and CuAu, 
respectively. 
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parison of different lattice (fcc, bee) and use of "ground 
state search" within the context of LDA calculations. 
A similar approach 17 that uses directly Eq. (3) [with 
volume-dependent JR(V)] rather than e - G approxi- 
mation produces nearly identical results. We conclude 
that such first principles total energy calculations on a 
small number of periodic structures can be used along 
with lattice models to effectively search among many 

configurations for the global ground state structures 
of intermetalllc compounds. This removes the need to 
correctly guess at the outset a set guess the aftlstructures at 
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