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Abstract
This study presents a strong form-based meshfree point collocation method for thermomechanical contact between two 
deformable bodies. The proposed method, based on Taylor approximation and the method of moving least squares, is imple-
mented in a staggered Newton–Raphson framework to directly discretize and solve the governing nonlinear system of partial 
differential equations. Following the formulation of the proposed method and the discretization of the governing equations, 
four numerical examples are presented to verify the computational framework described. The first two examples, involving 
frictional contact along an inclined surface and Hertzian contact between two half-cylinders, verify the method’s ability to 
simulate two-body mechanical contact. The next two examples, involving coupled mechanical and thermal contact between 
rectangular blocks for two loading conditions, verify the ability of the method to simulate thermomechanical contact.
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1  Introduction

The mechanics of contact, particularly thermomechanical 
contact, has wide-ranging applications in engineering, from 
modeling automobile crash safety to hip joint replacements 
to pellet-cladding interactions in a nuclear fuel rod [1–3]. 
Due to the nonlinear dependence of the contact traction 
and heat flux on the displacement and temperature fields, 
the governing equations for thermomechanical contact are 
nonlinear. In many of the applications of thermomechani-
cal contact, coupling between the mechanical and thermal 
fields is an important concern. For example, temperature 
changes may cause significant thermal expansion, mechani-
cal friction may generate significant heat, and degree of heat 
transfer across contact surfaces may depend significantly on 
the contact pressure [1, 4]. These applications and concerns 
have motivated the development of computational methods 
for solving contact problems numerically.

In the majority of computational studies of contact prob
required because of sharp gradients observed near transi-
tions between stick and slip conditions and near the edges of 
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By directly discretizing the strong form of governing PDEs 
using a set of approximate derivative operators, the proposed 
method avoids mesh dependency, domain integration, and 
exact computation of derivatives [14]. In addition, the pro-
posed method easily treats boundary conditions and adaptive 
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where �3 is the unit basis vector pointing out of the paper. It 
is convenient to decompose the contact traction �c at a point 
� into components along � and � , as follows:
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The length of � and � is Lp =
(ndim+m)!

ndim!m!
 . The integer arrays 

�1, ...,�Lp
 are in lexicographical order by convention.

Now, consider a set of N collocation points on a domain 
Ω . If the value of u is known only at each of these N points, 
the vector � of derivative coefficients must be found approxi-
mately. The best vector � in the weighted least squares sense 
is found by minimizing the functional

Here, w is a weight function with a compact support, i.e., 
positive inside and zero outside of a closed disk of radius 
𝜌(�̄) surrounding �̄ . The radius � , called the dilation param-
eter, may vary with the location of the local center over the 
domain Ω to adjust for spatial variation in the density and 
pattern of collocation points. Differentiating F  with respect 
to � and setting the result equal to zero yields the optimal 
approximate derivative coefficient vector �∗ , given by

Here, the matrix � is given by

The matrix � is given by

Note that the weight function w is not differentiated in this 
formulation, so non-smooth weight functions may be used.

For a single local center �̄ , the approximate derivative 
vector �∗ minimizes the weighted least square residual glob-
ally. However, a best local approximation at each colloca-
tion point may be found by moving the local center to each 
collocation point �I , hence the term “moving least squares.” 
Thus, taking �̄ → �I , the best � in the moving least squares 
sense at each collocation point �I is given by

Since the �th entry of �(�I) is an approximation for the �th 
derivative of u evaluated at �I , the corresponding row of 
�(�I
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The second solution vector is the nodal temperature change 
vector, given by

Here, �I is the Ith collocation point, N is the total number 
of collocation points, uh

i
 corresponds to the ith displace-

ment degree of freedom, and Th corresponds to the tem-
perature change. In the present study, there are a total of 
three degrees of freedom, namely the x- and y-components 
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The strong form of the PDEs in (4.4) are discretized by 
replacing the various derivative terms with approximate 
derivatives constructed using the differential operators from 
Chapter 3. This discretization is used to construct the equa-
tions for each interior collocation point. Suppose �I ∈ Ω is 
an interior collocation point and let Φ�

IJ
 represent the Jth 

entry of the �th differential operator at collocation point �I . 
Then, the equations in (4.4) for node �I ∈ Ω are discretized 
as

Thus, for node �I ∈ Ω , the 2 × 2 IJ block of �� is given by 
the partial derivative of (4.5) with respect to {uh

1
(�J), u

h
2
(�
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displacement and strain assumption. The nonlinearity for the 
contact problem in this study comes solely from the contact 
constraints, discretized in the following section.

4.2 � Discretization of regularized mechanical 
contact constraints

Like the traction boundary condition (2.7)2 , the contact con-
dition (2.7)3 contains the �� term. Unlike prescribed traction 
�̄ , however, the contact traction �c depends on the displace-
ment field. To discretize the contact constraints, we begin 
by substituting (2.10) in (2.7)3 and writing this equation in 
index notation:

The values of contact pressure tN and tangential traction tT 
depend on the gap function and the slip/stick state of the sys-
tem, as explained in Sect. 2. The gap function is discretized 
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above are simply concatenated I = 1 ∶ N according to the 
type (interior, boundary, contact, etc.) of node I. Thus, the 
Ith block of �� , i.e., entries 2I − 1 and 2I of �� , is given by

Similarly, the IJ block of �� is given by

Note that the tangent stiffness matrix ��
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the stress field, the contact algorithm, and an ABAQUS FEM 
model. The FEM model was chosen to have roughly the 
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near the edge of the contact boundary. However, as the col-
location point arrangement is further refined, the discrep-
ancy between the computed and analytical solution near the 
edge of the contact boundary is reduced. It should also be 
noted that finite-element methods such as [9] experience 
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5.3 � Thermomechanical contact 
between rectangular blocks
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problem for various values of prescribed displacement. Fig-
ure 17 shows contour plots of the components of displace-
ment and temperature for ūy = −1.0 × 10−3 . The computed 
displacement and temperature fields in Fig. 17 are reason-
able. As expected in the x-displacement field, the top and 
bottom edges are held fixed in the x-direction while the left 
and right sides experience a Poisson’s effect. The y-compo-
nent of displacement has an approximately constant slope 
in the y-direction, as expected since the two blocks have the 
same material properties. Any discrepancy from constant 
strain �yy can be explained by the thermal expansion of the 
top block. Finally, the temperature field has a jump at the 
contact interface but there is a temperature gradient across 
each block, reflecting the imperfect, i.e., flux-resistant heat 
conduction across the interface modeled by Eq. (2.22).

Beyond these initial assurances, the numerical solution is 
verified by its agreement with the analytical solution for the 
temperature jump across the contact interface. The analytical 
temperatures along the contact interface are computed based 
on the computed contact pressure because an analytical solu-
tion based directly on prescribed displacement is unavail-
able. Figure 18 shows that the temperature jump across the 
contact interface becomes smaller as the contact pressure 
increases because the increased contact pressure makes the 
surface more conductive, as expected.

It also shows that the analytical temperature vs. contact 
pressure is visually indistinguishable from the computed 
solution. The maximum relative error between the analyti-
cal temperature and the computed temperature is

The numerical results from this section verify the imple-
mentation of the proposed method for thermomechanical 
contact. From the first example, it is clear that the method 

(5.4)
max|�exact − �numer|

max|�exact| = 2.3 × 10−4.
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Fig. 17   a x-component of displacement, b y 
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can accurately distinguish between stick and slip in the case 
of frictional contact. The second example (Hertzian con-
tact) demonstrates that the proposed method can success-
fully match the analytical solution for a nontrivial contact 
pressure profile in the frictionless case and predict a reliable 
numerical solution of the governing equations in the fric-
tional case. Based on the third example, the method can han-
dle the additional nonlinearity of the thermal field, since the 
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