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Abstract
This work presents a strong form meshfree collocation method for a multi-phase field model with finite dissipation effects 
due to rapid solidification. We use the collocation method to simulate and study solidification of a low concentration (0.2 
at% Sn) Al–Sn binary alloy system under periodic boundary conditions to address non-equilibrium solidification. Numeri-
cal implementation takes place through spatial discretization of the governing equations with the collocation method fol-
lowed by application of the Crank–Nicolson method to integrate through time. Analysis begins with a benchmark, a simple 
two-grain case with symmetry in domain size, grain positioning, and boundary conditions to study the behavior of the field 
equations and key terms embedded within. This occurs by studying field and embedded term values along the axis of sym-
metry. Solidification analysis is then extended for 10 and 20 grains where upon full solidification, the regions with the highest 
overall concentrations exist within grain boundary region consisting for four or more adjacent grains. An analysis of alloy 
solidification over a substrate demonstrates epitaxial nucleation and growth.

Keywords  Multi-component alloy · Non-equilibrium · Solidification · Phase field model · Strong form · Meshfree 
collocation

1  Introduction

Solidification is a phase transformation process of a liquid to 
solid that mainly determines crystallographic characteristics 
of polycrystalline materials. A polycrystalline microstructure 
of metallic materials consists of multiple grains with differ-
ent crystallographic orientations which are separated by grain 
boundaries. Such a grain structure evolves during the solidifica-
tion process via grain growth. The importance of polycrystalline 
microstructures in being associated with many of the macro-
scopic mechanical properties has been well known [1–3].

Rapid solidification processes occur at extremely small 
timescales, leaving t20]. More recently, a multiscale coupled 
finite element and phase field framework for the prediction 
of stressed grain growth has been developed [21].

In this work, we explore the multi-phase field model of 
Steinbach et al. [8] with a recently developed strong form-
based collocation method [22–24] to consider the rapid 
solidification of multi-component alloy system. In this 
multi-phase field model, the energy functional F comprised 
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of interfacial f int and chemical f chem energy densities. The 
alloy concentration field c is split into phase concentrations 
c� for each phase � ; note that c� is related to c through the 
weighted sum c��� by c =

∑N

�=1
c��� where �� is the phase 

field for � . The Gibbs free energy, 
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where ��� is the interfacial energy between phases � and � , 
� is the interface width which is set to a constant for all 
interfaces in this study, and f� is the bulk free energy of 
phase � . Note that the last terms in Eqs. (16) and (17), i.e. ∑N

�=1
�� = 1 and ci

��
= ��c

i
�
+ ��c

i
�
 implies the constraint 

conditions which are described in terms of Lagrange multi-
pliers, respectively.

Derivation of the rate �� occurs through the first variation 
of the free energy functional F:

The rate change of the phase field �� is then written as [8]:

where

As shown in Eq. (19) the phase field and its rate are deter-
mined by the sum total of interface fields ����

�t
 for all active 

phase pairs �� and �� acting at each point in a region of 
active phase transformation, i.e. 0 > 𝜙𝛼 > 1 called the inter-
phase region. The evolution of each phase pair within this 
interfacial region as described by Eq. (20) is driven by ther-
modynamic or chemical source term Δg�� . Note that the 
driving force Δg�� depends on by differences in temperature 
T and phase composition c that determine Gibbs free energy 

(17)f
chem

��
=

N∑
�=1

�� f� (�� ) +

n−1∑
i=1

�i

��

(
c

i

��
− ��c

i

�
− ��c

i

�

)
.

(18)
���
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���
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∇
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(19)
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4 � Numerical examples

4.1 � Non‑equilibrium solidification of Al–Sn binary 
alloy

All examples within Sect. 4 consider solidification of Al-0.2 
at% Sn alloy with FCC-A1 and BCT-A5 phases present in 
the system. The eutectic temperature, i.e. the FCC and BCT 
solidification point, occurs at 502 K. Our region of interest 
for this study is located within the encircled region of Fig. 1a 
where at 860 K the FCC phase precipitates out of solution 
above the eutectic temperature. The FCC and liquid Gibbs 
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rendering of the discretized system with two grains at the 
early stages of growth is shown in Fig. 2.

In this case, there exist three phase fields � ∈ {1, 2, 3} 
where 1 = liquid, 2 = grain1 , and 3 = grain2 and each phase 
field is endowed with its own independent concentration, 
c� , field. The concentration of Sn in Al, i.e. cSn at any point 
[9] is then given by:

along with the constraint condition

To examine each of the terms in Eq. (20), it is helpful to per-
form a visual dissection of the rate equation. This is shown 
in Fig. 3, which consist of a snapshot of the phase field 
profile at the 100th step in the simulation with correspond-
ing section values along the centerline at � = (0, L∕2) . The 
centerline values in Fig. 3b represent the terms embedded 
within Eq. (20). These energy terms, one of geometry and 
the other chemical are generally of opposite sign and in this 
case, the chemical energy clearly dominates in magnitude. 
This results in a positive sum as shown with the dashed line 
in Fig. 3b, thereby driving the material towards solidifica-
tion. The sum is scaled by the kinetic coefficient as described 
by Eq. (22) to produce the phase field rate shown in Fig. 3c, 
which over an increment of time, yields changes to the phase 
field geometry. The changing phase field geometry evolves 
into a shape that tends to temper or resist the chemical driv-



52	 Engineering with Computers (2023) 39:45–59

1 3

Temperature is only independent parameter external to the 
system and it along with the phase composition, feed the 
chemical potential and its force gradient.

We now move to the concentration field where per 
Eq. (31), sum of phase weighted components ��c� deter-
mines the overall concentration field cSn . Therefore, it is of 
interest to understand the effect of ��c� on the evolution of 
cSn . Our analysis begins with the concentration fields dis-
played in Fig. 4 at six instances in time detailing the overall 
concentration field and its phase weighted components. For 
reference a phase field surface plot is also embedded within 
each frame. Recall, that the phase weighted concentration 
profiles are initialized to 0.02 at% Sn. Regions of active 
phase transformation are bounded with the dashed lines of 
the cross-sectional plots. Evolution begins with a liquid to 
solid transition about the initial seed locations, Fig. 4a, b, 
eventually leading to small region that is fully solidified 
Fig.  4c, and finally radial growth Fig.  4d–f. Only the 

diffusion term, i.e. the first term in Eq. (24) affects the con-
centration rate for points outside of the interphase region 
where for this set of points cSn

liq
= �liqcliq and cSn

sol
= �solcsol 

are constant. Concentration values for points located close 
to the outer edge but still within the interphase or transition 
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computational requirements for temporal integration, how-
ever, appear to exhibit quadratic rate. This is attributed to 
the fact that finer discretizations produce more points within 
the interphase region.

Now consider the case of 10 grains with the same mate-
rial properties as given in Table  1. Recognize that each 
grain is assigned a phase where inter-grain permeabilities 
and mobilities between solid/grain phases are set to zero. 
Ten seeds are randomly distributed throughout the domain 
with a uniform initialization of all concentration fields c� at 
a value of 0.02 at% Sn in Al. Fig. 6 is a collection of concen-
tration and phase values observed at six instances of time. 
The liquid phase concentration component �liqcliq initially 
dominates the overall field behavior Fig. 6a. At this stage, 
Sn particles begin to evacuate out of the solidifying mate-
rial resulting in an elevated concentration profile extending 
from the outer rim of the interphase region into the liquid. 
Driven by its gradient, the elevated concentration fields then 
radiate out towards and eventually join one another Fig. 6b, 
c. Solid–solid interphase evolution is suppressed in active 
regions involving two or more grains. This is attributed to 
the impermeability condition which drives the kinetic coeffi-
cient K�� to zero. Grain growth partitions the liquid into dis-
tinct areas, each enclosed by an intergrain boundary, result-
ing in an overall increase in concentration within these areas 
Fig. 6d. and continues until the domain is fully solidified 
Fig. 6e. As shown in Fig. 6o, higher concentrations of Sn 
in the fully solidified material occur at the grain boundaries 

with the highest levels located at intergrain regions consist-
ing of four or more adjacent grains.

4.2 � Epitaxial growth

Some manufacturing and joining processes including addi-
tive manufacturing and welding involve solidifying a liquid 
metal over a solid substrate [3]. The solid substrate serves as 
a site for epitaxial nucleation whereby newly formed crys-
tals nucleate at the adjacent substrate grains. Furthermore, 
the crystal’s crystallographic orientation does not change 
throughout the process. The resulting morphologies, a func-
tion of the liquid temperature gradient and solidification rate, 
are categorized by solidification modes to include planar, 
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5 � Conclusions

A strong form-based collocation methods has been applied 
to discretize a multi-phase field model developed by [8] and 
study non-equilibrium, i.e. rapid solidification behavior for 
an Al-0.2 at% Sn alloy with the finite dissipation effects. 
Temperatures for the dilute alloy were set between liquid 
and eutectic regions, at a point where the solid Al, i.e. FCC 
phase evolves from the mixture. Gibbs energy curves for the 
system were constructed from experimental parameters and 
methodologies given in the COST-507database [34]; note 
that details are described in Appendix A.

Initial analysis of two symmetrically positioned grains 
under periodic boundary conditions illustrated interface and 
chemical free energy effects on phase and concentration 
field kinetics. Subsequent multi-grain solidification studies 
for the 10-grain and 20-grain case provided insight in the 
concentration profile of the fully solidified material. The 
results show that solid phase Al forming within grain inte-
rior with Sn solute ejected towards the boundary with high-
est concentrations located the intersection of multiple grain 
boundaries. Finally, the field equations were evaluated for 

alloy solidification in the presence of a 20-grain substrate. A 
resulting morphology exhibited a planer type solidification 
mode with three large grains extending from the grains sub-
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used to calculate free energies of pure element and multi-
component systems. The coefficients are temperature T 
dependent and are used with the power series to evaluate 
the molar free energy g for a pure species i in phase � with 
respect to its stable state enthalpy; i.e.

The free energy of multi-component system consists of con-
tributions from each constituent species within the mixture 
and of mixing between species. Contributions from mix-
ing are further classified as either ideal or non-ideal where 
the latter is modeled with a Redlich-Kister polynomial that 
contains temperature dependent interaction parameters L� . 
For a substitutional three-component alloy system, the free 
energy is given by

where the right hand side terms respectively correspond to 
the unmixed, ideal mixing, binary non-ideal, and ternary 

(33)
g
�

i
(T) − h

�

i
(298.1K) = a + bT + cT ln T

+ dT2 + eT3 + fT−1 + gT7 + hT−9.

(34)

G𝛾 (xi, T) =

3∑
i=1

xig
𝛾

i
+ RT

3∑
i=3

3∑
j>i

xixj

3∑
𝜈=0

L𝜈
ij
(xi − xj)

𝜈

+

3∑
i=1

3∑
j>i

3∑
k>j

xixjxk(xiL
0

ijk
+ xjL

1

ijk
+ xkL

2

ijk
)

Fig. 7   Discretized 10 × 20 μm2 computational domain of Al-0.2% Sn 
mixture formed by a union of solid domain, i.e. lower half and liquid 
domain, i.e. upper half

Fig. 8   Concentration and phase fields in Ω1 for: a initial and b final Sn concentration, c, d solid phase, and e, f Al concentration
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non-ideal mixing terms. Invoking the chain rule to differenti-
ate Eq. (34) with respect to composition yields

with

Note that for the constraint, i.e. 
∑

xi = 1 we use the condi-
tional relation to implement Eq. (36) in our computational 
analysis program:

(35)
�G� (xi, T)

�xm

=
�G� (xi, T)

�xi

�xi

�xm

= G
�

,i
xi,m

(36)

𝜕G𝛾 (xi, T)

𝜕xm
=

3∑
i=1

xi,mg
𝛾

i
+ RT

3∑
i=1

(xi,m(ln xi + 1))

+

3∑
i=1

3∑
j>i

(xi,mxj + xj,mxi) +

n∑
𝜈=0

L𝜈
ij
(xi − xj)

𝜈

+

3∑
i=1

3∑
j>i

xixj

n∑
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𝜈L𝜈
ij
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𝜈−1(xi,m − xj,m)

+

3∑
i=1

3∑
j>i

3∑
k>j

(xi,m
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Note that there also exist similar properties for ℝ3 domains 
and higher ordered derivatives (i.e m > 2 ) as well.

Another way to measure the effectiveness of differential 
operators is through its interpolation error. This may be 

achieved by benchmarking solution data for a given par-
tial differential equation against data from another known 
or trusted solution analytical, numerical, or manufactured 
solution. In this work, we take the latter approach by 

Fig. 10   Comparisons of the computed Gibbs energy (a–c) against Thermo-Calc software (d–f) at the same temperature, i.e. T = 600 K; the cal-
culated Gibbs energy at along each edge of the Al–Sn–Zn ternary system, i.e. (Al, Sn, Zn = 0), (Al, Sn = 0, Zn) and (Al = 0, Sn, Zn) are shown
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manufacturing and differentiating two primary fields c(x, y) 
and �(x, y) as shown in Eqs. (38) and (39) respectively to 
produce a term ∇ ⋅ (�(x, y)∇c(x, y)) . The manufactured 
fields are variants of those taken from a helpful report on 
the method of manufactured solutions [38].

Figure 11 presents a comparison between analytical y and 
approximate solution yh fields for the term ∇(�(x, y)D∇c(x, y) 
which test all two-field first order derivative products, sec-
ond order derivatives and combinations thereof; for the com-
putation, an unit square domain is discretized with uniformly 
distributed 4900 collocation points. The computed discrete 
L2 norm error which is given by

was measured at a value less than 0.3%. Those who inter-
ested in the computational resources to construct differential 
operators are referred to Sect. 4 of this study.

(38)c(x, y) = c0

[
1 + sin

2
(

x

R

)
sin

2

(
2y

R

)]

(39)�(x, y) = �0

[√
x2,x



59Engineering with Computers (2023) 39:45–59	

1 3

	 8.	 Steinbach I, Zhang L, Plapp M (2012) Phase-field model with 
finite interface dissipation. Acta Mater 60(6–7):2689–2701

	 9.	 Zhang ISL (2012) Phase-field model with finite interface dissipa-
tion: extension to multi-component multi-phase alloys. Acta Mater 
60(6):2702–2710

	10.	 Reuther K, Hubig S, Steinbach I, Rettenmayr M (2019) Solute 
trapping in non-equilibrium solidification: a comparative model 
study. Materialia 6:100256

	11.	


	Strong-form meshfree collocation method for non-equilibrium solidification of multi-component alloy
	Abstract
	1 Introduction
	2 The strong form based meshfree collocation method
	2.1 Meshfree collocation approximation
	2.2 Multi-phase field model for non-equilibrium solidification
	2.3 Discretized equations

	3 Computational implementation
	4 Numerical examples
	4.1 Non-equilibrium solidification of Al–Sn binary alloy
	4.2 Epitaxial growth

	5 Conclusions
	Acknowledgements 
	References




