Materials /center/ciest/ en Reinforced Concrete Student Project /center/ciest/2024/03/03/reinforced-concrete-student-project Reinforced Concrete Student Project Anonymous (not verified) Sun, 03/03/2024 - 13:06 Categories: Instruction Materials Projects Seismic Design

Project Title: Reinforced Concrete student project

Participants: Prof. Abbie Liel, CIEST

Year: 2024

Summary:

In this experiment, undergraduate students in Prof. Abbie Liel's class, analyze the failure modes of concrete. Using the biaxial frame, a hydraulic actuator capible of exerting a 110kip or 110,000lb of force vertically, the students investigated the failures of two reinforced concrete beams. This was illustrated with two beams, a 5.5"x8"x45'' block of concrete with 3/8" diameter rebar positioned parellel to the faces of the concrete block as well as 1/2" diameter rebar positioned axially,  and a 5.5"x8"x69'' concrete beam, with rebar placed in the same manner. According to several students, seeing both failures upclose solidified the notions of shear and moment/bend failures.

Video of one of the failures: .

Off

Traditional 0 On White ]]>
Sun, 03 Mar 2024 20:06:45 +0000 Anonymous 299 at /center/ciest
Seismic Evaluation of Hazard-Resistant Lifelines: Fusible PVC Pipe and Fittings /center/ciest/seismic-evaluation-fusible-pvc-pipe-and-fittings Seismic Evaluation of Hazard-Resistant Lifelines: Fusible PVC Pipe and Fittings Brad Wham Sun, 07/18/2021 - 11:03 Categories: Materials Projects research Tags: Full Scale Testing Lifeline Systems Pipeline Systems Projects Reports Research

Project Title:  Seismic Evaluation of Hazard-Resistant Lifelines: Fusible PVC Pipe and Fittings

Industry Partners: Aegion Corportation - Underground Solutions Inc. 

CIEST Personnel: Cory Ihnotic,  Jessica Ramos, D.K Anderson, David Balcells

Primary Investigator: Prof. Brad Wham 

Year: 2021

Project Summary: The intent of this study is to impose external loading conditions to test specimens that are representative of the significant deformations possible during earthquake-induced ground motions such as landsliding, fault rupture, and liquefaction-induced lateral spreading, characterizing the pipeline system capacity. This testing program seeks to define the seismic response of fusible PVC (fPVC) pipeline systems with both fused connections and external couplings, illustrating procedures and best practices for conducting full-scale tests and interpreting laboratory results. Thirteen large-scale tests were performed on 6-in. diameter DR18 (PC235) fusible PVC pipe (C900) with three different connection types. Test specimens were subjected to tension, compression, cyclic, and four point bending tests, determining the ultimate load capacity for each system in both axial and transverse directions. 

Link to report: /center/ciest/sites/default/files/attached-files/240724_ciest-ugs_fusible_report_to_be_published.pdf

 

 

The intent of this study is to impose external loading conditions to test specimens that are representative of the significant deformations possible during earthquake-induced ground motions such as landsliding, fault rupture, and liquefaction-induced lateral spreading, characterizing the pipeline system capacity.

Off

Traditional 0 On White ]]>
Sun, 18 Jul 2021 17:03:45 +0000 Brad Wham 308 at /center/ciest