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Chapter 1

Introduction

This thesis covers two main topics: numerical algorithms for wave propagation and a fast
tomographic reconstruction algorithm for transmission electron microscopy. The main con-
tributions of this thesis are:

� using bases for bandlimited functions as a numerical tool in algorithms of wave prop-
agation,

� developing and using e�cient representations of operators in two dimensions for pur-
poses of wave propagation,

and

� constructing a fast algorithm for tomographic reconstruction of thick biological speci-
mens for the transmission electron microscopy.

Using bases for bandlimited functions allows us to achieve a low oversampling rate while
signi�cantly reducing numerical dispersion. By using the operator representations introduced
in this thesis for wave propagation, application of the matrix exponential for large time steps
becomes feasible as a numerical propagation scheme.

1.1 Wave propagation

There are numerous applications of wave propagation in acoustics, elasticity and electro
magnetics, including medical imaging, sonar, seismology, radar, and noise m094 0 T-n, lv Td
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We develop fast and accurate numerical algorithms to solve (as an example) the equation
of acoustics

�(x)utt = (�(x)ux)x (1.1)

with spatially varying material parameters �(x) and �(x). The coe�cients �(x) and �(x)
represent the compressibility and the speci�c volume of the medium, respectively. The goal
is to construct schemes where we control the bandwidth and accuracy. Our approach is
based on the following ideas:

� We choose a basis that works well for problems with variable medium parameters,
non-periodic boundary conditions, and material interfaces.

� By constructing derivative operators with nearly uniform error distribution for fre-
quencies within a given bandwidth we reduce numerical dispersion.

� We use integration by parts to incorporateanc49552 Tf
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In this thesis, we consider bandlimited functions restricted to an interval (see Section 2.5
for a precise de�nition). There are several bases available for computations using bandlimited
functions (see Xiao et al. [56], and Beylkin and Monzon [9]). In this thesis we review the
construction of three bases based on functions of the type fec�kxgN

k=1 where j�kj < 1. Since we
do not impose that �k = k�, these functions are not necessarily periodic. The basis spanned
by fec�kxgN

k=1 is usually not suitable for numerical computations since these functions are
in general not orthogonal. Instead, we form linear combinations of these basis functions to
construct approximations to the prolate spheroidal wave functions which were introduced as
a basis for bandlimited functions by Slepian et al. in a series of papers [54], [38], [39], [51],
and [52]. The resulting basis can be shown to be almost orthonormal and,



If there is no time-dependent force, the solution can be computed by a sequence of matrix-
vector multiplications,

u(tk) = e�tLu(tk�1); (1.2)

where the time step �t can be chosen arbitrary large without causing instabilities.
The computation of e�tL and the matrix-vector multiplications in (1.2) are computa-

tionally costly in dimensions two and higher and, therefore, this approach is rarely used for
numerical computations. We use the separated representation introduced by Beylkin and
Mohlenkamp [7] to represent the operator L for problems in two or higher dimensions. This
representation signi�cantly reduces the computational cost for computing the matrix expo-
nential and matrix-vector multiplications. The separated representation of an operator in
two or higher dimensions is given by a sum of operators in one dimension. We refer to the
number of terms in the separated representation as the separation rank. The separation rank
for the matrix exponential e�tL grows with the size of the time step �t, and we will see that
a time step between 1-2 temporal periods is appropriate to control both the separation rank
and the number of time steps. We reduce the computational cost further by representing
the operators in one dimension by introducing the so-called Partitioned Low Rank (PLR)
representation which is similar to the partitioned singular value decomposition considered by
Jones et al. [34], and by Beylkin et al. [10]. We note that both the separated representation
and the PLR representation are interesting on their own, with applications in other areas,
e.g., computational quantum mechanics (see Beylkin and Mohlenkamp [7] and [8]).

1.1.4 Wave propagation on space-like surfaces

As an application of the tools for wave propagation, we consider wave propagation on space-
like surfaces. This problem appears in some approaches for solving the inverse problem where
sound waves are propagated through a domain with an unknown scatterer. By measuring the
scattered wave �eld at a surface outside the scatterer, the goal is to determine the structure
of the scatterer. In particular, we consider ultrasound tomography and an approach by
Natterer and W�ubbeling [44] which involves repeated solution of equations on the form

uyy = �uxx � �(x; y)!2(1 + f)u � Au; (x; y)2 [�1; 1] � [�1; 1]

u(x;�1) = g(x)

uy(x;�1) = h(x)

u(�1; y) = r(y)

u(1; y) = s(y)

: (1.3)

This equation is an initial value problem for the Helmholtz equation and we refer to it as wave
propagation on space-like surfaces. As posed in (1.3), this equation is unstable. In many
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applications, for example underwater acoustics, seismics, and Synthetic Aperture Radar
(SAR), this problem is stabilized by replacing the operator in (1.3) by one-way operators.
Such approach excludes waves going in the opposite direction, e.g. multiple re
ections. An
alternative approach has been proposed in [44], where this problem is solved for constant
coe�cient � by using Fourier-techniques to �lter out the high frequencies of the solution.
In this paper, we consider the case of x-dependent coe�cient �. We show that by forcing
the spatial operator A to be negative de�nite, we obtain an equation which can be solved
in a stable manner by computing the matrix exponential. In order to obtain a negative
de�nite operator, we review the work by Beylkin et al. [10] who present fast algorithms
for computing spectral projectors for self-adjoint operators. We extend this algorithm to
diagonalizable matrices with pure real or imaginary spectrum and apply the technique to
solve (1.3) for constant and x-dependent coe�cients.

1.2 Biological imaging

There is a signi�cant interest in studying the �ne structure of cells and tissues. By using high
voltage Transmission Electron Microscopy, biologists reconstruct three-dimensional images
of cell structures. A large amount of information is collected in the form of three-dimensional
images, and an important task is to use this information to build three-dimensional models
of cell structures. Image analysis is an important tool for gaining a deeper understanding of
biological structures of cells and tissues (Ladinsky et al. [37]).

The modeling process includes specimen preparation followed by imaging of the specimen
using electron microscopy. The three-dimensional density of the specimen is computed by
tomographic reconstruction. The resulting data set is segmented (boundaries of certain
objects are labeled) and rendered into surfaces that can be visualized in three dimensions
(Kremer et al. [36]). The modeling process is time consuming and it is desirable to make
some of the steps automatic. This requires careful understanding of the decisions that are
currently being made by biologists.

The reconstruction process and the image segmentation stages involve a number of chal-
lenging mathematical problems. Tomographic reconstruction is of great importance in many
�elds, including seismic imaging, Magnetic Resonance Imaging (MRI), x-ray tomography,
and in electron microscopy. We consider the study of thick biological specimen using trans-
mission electron microscopy. This application involves some di�culties that has to be ad-
dressed by a successful reconstruction algorithm. The range of angles that can be used for
illuminating the specimen is limited to a range of angles, typically between �700, and the
measurement usually contain a signi�cant amount of noise. Also, the specimen is signi�-
cantly deformed during the experiment, which means that the angles usually are not equally
spaced.

In this thesis we develop a fast algorithm for tomographic reconstructions of transmission
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electron microscopy data. The goal is to construct a fast reconstruction algorithm that
produces the same results as the direct summation technique [28] traditionally used for
electron microscopy tomography of thick specimen. The goal is to construct an algorithm
that scales as O(N 2 logN) compared to O(N 3) for the direct summation technique.

Our approach is based on the reconstruction technique known as �ltered backprojection
or direct summation (see, e.g., Deans [18] and Gilbert [28]), where the reconstruction for-
mula takes the form of a sum. Instead of summing in the space domain, we express the sum
in Fourier space where we can use the Unequally Spaced Fast Fourier Transform (USFFT)
introduced by Dutt and Rokhlin [21], and by Beylkin [4], for e�cient summation. The re-
sulting algorithm has been incorporated into the software package IMOD [32],[36] developed
by The Boulder Laboratory for 3-D Electron Microscopy of Cells at University of Colorado
at Boulder.

1.3 New results

Although this thesis combines tools from a number of papers, in particular [9], [1], [7], [10],
and [4], there are some results and applications that are new:

� The use of bandlimited functions for numerical solutions of partial di�erential equa-
tions.

� The construction of an algorithm for solving the acoustic equation in two dimensions
with variable coe�cients with a signi�cant reduction of numerical dispersion compared
to a fourth order �nite di�erence scheme. The time evolution method allows large time
steps and is signi�cantly faster than using the explicit Runge-Kutta 4 solver.

� The use of spectral projectors for numerical solutions of wave propagation problems
on space-like surfaces.

� The construction of fast operator calculus algorithms for matrices represented in the
PLR form. The PLR form is demonstrated to be an e�cient representation for many
matrices that are not compressible with wavelet-techniques and the singular value
decomposition.

� The construction of spectral derivative matrices incorporating boundary and inter-
face conditions. The thesis generalizes existing methods to non-orthogonal bases and
demonstrates how the use of spectral projectors improves the conditioning of the deriva-
tive matrices.

� Miscellaneous results for the approximate prolate spheroidal wave functions introduced
in [9].
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� The construction of a fast algorithm for tomographic reconstruction of thick biological
specimen using transmission electron microscopy. The new algorithm is shown to be
faster and to provide more 
exibility than the commonly used technique �ltered back
projection (a.k.a. direct summation).

1.4 Speed comparisons

For the speed comparisons in this thesis, we used a Dell computer running Red Hat Linux
8.0 with a Pentium 4 2.56GHz processor and a memory of 1GB RAM with 512kB cache. The
programs were written in Fortran 77 using (non-optimized) BLAS and LAPACK routines
for linear algebra operations. We used the the g77 compiler with the compiler 
ags -O3

-march=pentium3 -mmmx -msse -malign-double -funroll-loops.

1.5 Outline of the thesis

We begin with a review of the bandlimited functions in Chapter 2 where we also include a few
new results. In the third chapter, we construct derivative matrices incorporating boundary
and interface conditions with respect to an arbitrary set of (smooth) basis functions. We
apply the tools from Chapter 3 to bandlimited functions in Chapter 4 where we provide
several numerical examples demonstrating the accuracy-14.4 Td
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Chapter 2

Bandlimited functions

In this chapter we study bandlimited functions and present numerical tools for using them.
Our main motivation for using bandlimited functions for numerical analysis is that solutions
of PDEs behave more like exponentials than polynomials which comprise the main tool used
today id
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and

kuk1 = max
x2[�1;1]

ju(x)j:

Occasionally, we extend these functions to functions on
�

and use the norms

kukL2(� ) =

s

Z 1

�1
ju(x)j2 dx

and

kukL∞(� ) = max
x2 �

ju(x)j

for the extended functions.

2.2 The space of bandlimited functions

In this section we introduce bandlimited functions on the real line. We review properties of
such functions and state a bound for the derivative. Following Landau and Pollak [38], the
bandlimited functions are de�ned as

De�nition 1 (Bandlimited functions) Let c > 0 and de�ne the space

Bc = ff 2L2(
�
) j f̂(!) = 0 for j!j > cg:

We refer to Bc as the space of bandlimited functions of bandwidth c.

We note that the space of bandlimited functions equipped with the standard inner product
is a closed linear subspace of L2(

�
) and, therefore, a Hilbert space. As an example, consider

the function

u(x) =
c

�
sinc(cx) =

sin cx

�x
: (2.2)

This function is square integrable on the real line and its Fourier transform is given by

û(!) =

�

1; !2 [�c; c]
0; ! 62 [�c; c] :

In some situations, we will use the following space which is dense in Bc.

De�nition 2 Let c > 0 and de�ne the space

Fc = Bc \ L1(
�
):
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As an example, consider the function

v(x) =
c

2�
sinc2(

cx

2
):

This function is absolutely and square integrable on the real line. The Fourier transform is
given by

v̂(!) =

�

1 � j!j
c
; !2 [�c; c]

0; ! 62 [�c; c] :

Hence, v 2 Fc. Note that the function u in (2.2) is not absolutely integrable, and hence u
does not belong to Fc.

The space Bc has the following properties.

Proposition 3 The space of bandlimited functions Bc has the following properties:

1. Every function u2Bc can be written as

u(x) =
1

2�

Z c

�c

û(!)ei!x d!

almost everywhere.

2. Let u2Bc and de�ne � > 0 by

� =
kukL2([�1;1])

kukL2( � )
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and since un ! u and ûn ! û in the L2-norm, u = ~u almost everywhere.
(2) This follows from Bernstein’s inequality. (See, e.g., Meyer [43, Ch. 2.5] and references

therein.)
(3) This follows from the second part of the proposition.

�

2.3 The Prolate Spheroidal Wave Functions

In this section we review the prolate spheroidal wave functions and consider some of their
properties. These functions have been studied by, e.g., Flammer [24] and Slepian et al.
[54],[38]. Properties of the functions are reviewed by Slepian [53]. Numerical tools for these
functions are given by Bouwkamp [11], Xiao et al. [56], and by Beylkin and Monzon [9].

The prolate spheroidal wave functions are de�ned as

De�nition 4 (Prolate spheroidal wave functions) Consider the bandwidth
c > 0 and de�ne the operator Fc : L2([�1; 1]) ! L2([�1; 1]) by

Fc( )(!) =

Z 1

�1

eicx! (x) dx; (2.3)

and the operator Qc : L2([�1; 1])] ! L2([�1; 1])] by

Qc( )(!) =
1

�

Z 1

�1

sin(c(! � x))

! � x
 (x) dx =

c

2�
F �

c Fc :

The eigenfunctions  of Qc and Fc are called prolate spheroidal wave functions .

Each eigenvalue � of Fc corresponds to an eigenvalue � of Qc by

� =
cj�j2
2�

: (2.4)

The prolate spheroidal wave functions depend on the bandwidth c for which they are con-
structed, but we will suppress this dependence in our notation.

Let us state some properties of the prolate spheroidal wave functions.

Theorem 5 The prolate spheroidal wave functions are complete in L2([�1; 1]) and Bc.

For a proof, see [54]. The eigenfunctions  j(x) are real and orthogonal on both [�1; 1] and
�
,

Z 1

�1

 i(x) j(x)dx = �ij; (2.5)
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and
Z 1

�1
 i(x) j(x)dx =

1

�i

�ij (2.6)

where �i is the eigenvalue of the operator Qc. This normalization is more convenient for our
purposes, although in the original paper by Slepian and Pollak [54], the prolate spheroidal
wave functions are normalized on

�
instead. The prolate spheroidal wave functions are

uniformly bounded on [�1; 1]. More precisely, there exists a bandwidth dependent constant
Kc such that

k jk1 � Kc (2.7)

for all j = 0; 1; : : : . As discussed in [9], the existence of Kc a



2.4 Bandlimited functions on an interval

In many applications we are interested in bandlimited functions restricted to a �nite interval.
We study a representation of such functions using exponentials in this section and show how
such representations provide local approximations of bandlimited functions in Bc. Following
[9] we de�ne

De�nition 7 (Bandlimited functions on an interval) De�ne the space Ec of bandlim-
ited functions of bandwidth c on an interval as

Ec =

(

u2L1([�1; 1]) j u(x) =
X

k2 �

ake
ibkx : fakgk 2 l1; bk 2 [�c; c]

)

:

We characterize the space Ec in the following theorem.

Theorem 8 The space Ec of bandlimited functions on an interval satis�es the following
properties:

1. Ec �C1([�1; 1])

2. For every � > 0 and u2 Fc there exists a function ~u2 Ec such that ju(x) � ~u(x)j < �
almost everywhere on [�1; 1].

3. For every � > 0 and u2Ec there exists a function ~u2Bc such that ku� ~uk2 < �.

4. For every � > 0 and u2Bc there exists a function ~u2Ec such that ku� ~uk2 < �.

In the proof of (2) below, we discretize an integral using the Riemann sum. This is usually
not an e�cient way for computing an integral, but we use it for the simplicity of the proof.

Proof. (1) Let u 2 Ec. Then the sequence fbkg is bounded, and it is easily shown that
the family of functions feibkxgk is equicontinuous on [�1; 1]. Since fakgk 2 l1 it follows that

u(x) =
X

k2 �

ake
ibkx

is continuous on [�1; 1] and hence Ec �C([�1; 1]). By the de�nition of Ec we have that the
n:th derivative of u is given by

u(n)(x) =
X

k2 �

(ibk)
nake

ibkx:

Since fakgk 2 l1 and j(ibk)nj � cn it follows that f(ibk)
nakgk 2 l1 and hence u(n)(x) 2 Ec for

each n = 0; 1; : : : . Since every function in Ec is continuous, it follows that Ec �C1([�1; 1]).

14



(2) By Proposition 3 it follows that any function u2Fc can be written on the form

u(x) =

Z c

�c

�(!)ei!x d!

almost everywhere and since u2L1(
�
), � is con



By using (2.8) it follows that u(x) = ~u(x) for all x2 [�1; 1]. Since ~u2L2([�1; 1]) and f jgj

forms a complete basis in this space according to Theorem 5, we can choose N su�ciently
large so that ku� ~uNk2 < �. Furthermore,  j 2Bc for j = 0; 1; : : : ; N and hence ~uN 2Bc.

(4) Let u2Bc. Then, since Fc is dense in Bc, there exists a function v2Fc such that

ku� vk2 < �=2: (2.9)

From the second part of the theorem we know that there exists ~u2Ec such that jv(x)�~u(x)j <
�

2
p

2
almost everywhere on [�1; 1]. Then

kv � ~uk2
2 =

Z 1

�1

jv(x) � ~u(x)j2 dx �
Z 1

�1

�2

8
dx < �2=4

which combined with (2.9) gives us that

ku� ~uk2 � ku� vk2 + kv � ~uk2 < �:
�

2.5 Approximation of bandlimited functions on an in-

terval

The goal of this section is to show that any bandlimited function on an interval of bandlimit
c can be approximated by a linear combination of a �nite number of exponentials in the form
eic�kx where j�kj � 1. The phases �k are chosen as nodes for quadratures for bandlimited
functions. We establish the existence of such quadratures for bandlimited functions in the
following theorem.

Theorem 9 Let � be a real, non-negative, integrable weight function supported in [��; �],
0 � � � 1=2, and let f
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For a proof, see [9, Theorem 6.1].
The constants �m and dm in the error estimate, are related to properties of the exponential

Euler splines, see [9, Theorem 6.1] and [50, pp. 29,30, and 35]. This theorem establishes the
existence of a quadrature and provides an error estimate. Actual computations, however, are
based on a slightly di�erent algorithm where a large number of the weights are su�ciently
close to zero to be disregarded (see [9] for more details). Therefore, the number of nodes and
weights actually used is typically signi�cantly less than the number of nodes and weights
required by the error estimate.

The theorem above is more general than our needs. We next state a special case of this
theorem which will be the foundation for our applications.

Corollary 10 Let c and � be positive numbers. Then, for N su�ciently large, there exist
constants fw1; : : : ; wNg and f�1; : : : ; �ng, such that for any x2 [�1; 1]

�

�
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to the prolate spheroidal wave functions using the functions eic�kx, and this construction
depends on the invertibility of the matrix E. Although we do not have a proof that our
construction guarantees that det(E) 6= 0, we have not encountered any counterexamples in
our experiments.

For the construction of the quadrature nodes in [9], we have the symmetry properties

�k = ��N�k+1 (2.11)

and

wk = wN�k+1: (2.12)

We use the quadrature nodes and weights to construct a basis for Ec according to the following
theorem.

Theorem 12 Consider the bandwidth c and a function u2Ec represented by

u(x) =
X

k2 �

ake
ibkx:

Let � > 0, and let f�lgN
l=1 and fwlgN

l=1 be a set of quadrature nodes and weights for bandwidth
2c and accuracy �2. Then there exist constants fulgN

l=1 and A such that
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bounded. The sequence fakgk 2 l1 by assumption and, therefore, ul =
P

k2 � ak�kl is well-
de�ned for l = 1; : : : ; N . It follows that
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For the L2([�1; 1])-norm we have that
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The error estimate in the previous theorem depends on the sum
P

k2 � jakj which is the
upper bound for both the function on [�1; 1] and on

�
. Nevertheless, numerical experi-

ments indicate strongly that this representation gives su�cient accuracy which we illustrate
in Section 2.7.

2.6 Bases for bandlimited functions on an interval

In the previous section we represented bandlimited functions on an interval using exponential
functions. We also discussed how we can construct quadratures for bandlimited functions on
an interval, and use the resulting nodes and weights to construct a �nite dimensional subspace
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that approximates the space of bandlimited functions on an interval within a �nite but
arbitrary precision. Even though the



2.6.2 Approximate prolate spheroidal wave functions

In the last section we pointed out that a disadvantage of the exponential



the initial approximate prolate spheroidal wave functions approximates well the correspond-



De�ne qj as the vector with elements given by qj
m =

p
wm	j(�m



Hence, if N is even, we have that rank(Ar) � N=2 and by the same argument rank(Ai) �
N=2.

Assume that there exists an eigenvector q such that q2N (Ar) \ N (Ai). Then � = � =
� = 0 which contradicts that � 6= 0. Hence, if q2N (Ar), then q2R(Ai). Therefore,

N (Ar)�R(Ai): (2.15)

Assume that rank(Ar) < N=2. Then dim(N (Ar)) � N=2 + 1 which by (2.15) implies
that rank(Ai) � N=2 + 1 which is a contradiction. Hence, rank(Ar) = N=2 and by the same
argument it follows that rank(Ai) = N=2. Since dim(N (Ar)) = rank(Ai) = N=2 it follows
from (2.15) that N (Ar) = R(Ai). (The case for odd N is analogous).

(6) Recall that the quadrature weights are real and even in the sense that wm = wN�m+1,
and that the quadrature nodes are real and odd such that �m = ��N�m+1. Using the
symmetry of the nodes �m it follows that

AN�m+1;l =
p
wN�m+1e

ic�N−m+1�l
p
wl =

p
wme

�ic�m�l
p
wl = Aml: (2.16)

Therefore, since qj is an eigenvector of A with eigenvalue �,

qj
N�m+1 =

1

�j

N
X

l=1

AN�m+1;lq
j
l =

1

�j

N
X

l=1

Amlq
j
l: (2.17)

Since �A = A� by the �rst part of the theorem and qj can be chosen to be real by the second
part of the theorem, it follows that qj is an eigenvector to �A with eigenvalue �j. Since the
eigenvalues �j are either pure real or pure imaginary by property (5), equation (2.17) implies
that

qj
N�m+1 =

�j

�j

qj
m = �qj

m:

We now have that

	j(�N�m+1) =
1p

wN�m+1

qj
N�m+1 = � 1p

wm

qj
m = �	j(�m): (2.18)

�

Corollary 16 The eigenfunctions 	j(x) de�ned in De�nition 14 are even or odd.
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Hij =

�

1
�i

if i = j

0 if i



Table 2.1: Condition number for S using � = 10�7

Bandwidth c Number of nodes N Condition number

4� 21 1:48
8� 31 2:11
12� 40 2:06
16� 49 2:34
20� 57 2:89

We now establish that the approximate prolate spheroidal wave functions can be used as
a basis for the space of bandlimited functions Ec;� de�ned in De�nition 13. By de�ning the
matrix B = HQTW we see that from (2.25) we have that

	j(x) =
N
X

l=1

Bjle
ic�lx:

From Proposition 15 it follows that Q is orthogonal, and therefore

det(B) = det(H) det(W ) =

N
Y

l=1

p
wl

�l

:

Since �l and wl are non-zero, it follows thatB is invertible (although it may be ill-conditioned),
and therefore the set of approximate prolate spheroidal wave functions spans the space Ec;�

de�ned in De�nition 13.

2.6.3 Interpolating functions

In many applications, it is convenient to work with function values of a function rather
than with expansion coe�cients with respect to a set of basis functions. This motivates the
introduction of the interpolating basis. When a function is expanded into this basis, the
expansion coe�cients are the function values at some set of nodes, in our case quadrature
nodes for bandlimited functions. Such bases are also useful in some multiwavelet applica-
tions when solving non-linear PDEs, see [1]. We de�ne the interpolating basis functions for
bandlimited functions on an interval as follows.

De�nition 18 (Basis of interpolating functions) De�ne the matrices Q, W , and H ac-
cording to (2.21)-(2.23), and the matrix R = WQHQTW . The sequence of functions

rk(x) =

N
X

l=1

Rkle
ic�lx (2.28)
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for k = 1; : : : ; N is





Exponentials

Approximate prolate

functions
spheroidal wave

BcB−1
c Rc

Pc

R−1
c P−1

c = QT W

P = W−1Q

B−1
c = WQH

Rc = W−1QH−1QT W−1

R−1
c = WQHQT W

Bc = H−1QT W−1

Interpolating
functions

P−1
c

Figure 2.4: Transformation matrices between three di�erent bases for bandlimited functions
on an interval. The matrices H, Q, and W are de�ned in (2.21)-(2.23). Note that the
matrices H and W are diagonal.

Table 2.2: Condition number for transformation matrices for the bandwidth c = 8:5�. The
accuracy � = 10�7 requires 32 nodes and the accuracy � = 10�14 requires 41 nodes.

Transformation matrix � = 10�7 � = 10�14

Pc 2.7 3.5
Bc 1:1 � 108 2:5 � 1014

Rc 1:2 � 108 3:1 � 1014

Table 2.3: Condition number for transformation matrices for the bandwidth c = 17�. The
accuracy � = 10�7 requires 51 nodes and the accuracy � = 10�14 requires 62 nodes.

Transformation matrix � = 10�7 � = 10�14

Pc 2.8 3.8
Bc 1:2 � 108 3:4 � 1014

Rc 1:3 � 108 4:0 � 1014
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and

f(x) ’
N
X

k=1

�k	k(x) (2.33)

where 	k(x) is de�ned in (2.14). Although both function approximations can be shown to be
identical, numerical ill-conditioning makes the �rst expansion considerable less accurate as
we will observe in the experiments. A heuristic explanation for this is given in Section 2.7.1.

2.7.1 Approximations of trigonometric functions by bandlimited
functions on an interval

For the �rst example, we construct 32 quadrature nodes and weights for the four band-
widths, c = 5:5�, 7�, 8:5�, and 10:5�. In order to obtain these bandwidths using 32 nodes,
we set the accuracy � to 10�13, 10�10, 10�7, and 10�4, respectively. We approximate the
function eibx for jbj � c by using the expansion (2.32) in Figure 2.5, and using the expansion
(2.33) in Figure 2.6. Note how the approximation in the �rst case (Figure 2.5) is better for
higher bandwidths than for lower bandwidths. In the second case (Figure 2.6) where we use
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where

(P�1
c )kl = (QTW )kl:

This transformation matrix does not contain the greatly varying factor 1
�j

that caused prob-

lems when computing expansion coe�cients with respect to exponentials. However, this
factor does appear in the expansion of 	k(x) as a linear combination of exponentials, namely

	k(x) =

N
X

n=1

(HQTW )kne
ic�nx: (2.36)

Since

(HQTW )kn =
1

�k

Qnk

p
wn

we see that the summation in (2.36) is multiplied by a factor 1
�k

. For large k, the denominator
�k � �, and hence the computation of 	k for large k may contain large errors. On the other
hand, the computation of the expansion coe�cients �k is stable and for functions of the type
eibx, equation (2.8) shows that the expansion coe�cients �k � �k. Therefore the expansion
coe�cients with respect to 	k for large k are small. In other words, from (2.8) we have small
expansion coe�cients with respect to the numerically unstable basis functions.

In Figure 2.7 we expand the function eibx for a range of bandwidths using 64 approximate
prolate spheroidal wave functions as basis functions. We construct the 64 nodes using the
four bandwidths c = 18:5�, 20:5�, 23�, and 26�. In order to obtain these bandwidths using
64 nodes, we set the accuracy � to 10�13, 10�10, 10�7, and 10�4, respectively.
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Chapter 3

Derivative matrices with boundary
and interface conditions

When solving ordinary and partial di�erential equations using spectral methods, we expand
the solution into a set of basis functions which we can di�erentiate exactly. The trigonomet-
ric functions or Chebyshev polynomials are two common choices of such basis functions. In
this thesis, we use the interpolating basis for bandlimited functions which also can be dif-
ferentiated exactly. We solve time-dependent PDEs by discretizing the spatial operator and
then compute the exponential of the resulting matrix. This approach requires the boundary
conditions to be incorporated into the spatial operator.

This thesis will also study numerical solutions to wave propagation problems over domains
with piecewise smooth coe�cients. We decompose the domain into a collection of subdomains
such that v



De�ne G as the linear span of f�i(x)gN
i=1 equipped with the inner product

(u; v) =

Z 1

�1

u(x)v(x) dx:

De�ne S; K; E; F , and G as the N-by-N matrices with elements given by

Skl = (�l(x); �k(x)) ;

Kkl =

�

�l(x);
d�k(x)

dx

�

;

Ekl = �k(�1)�l(�1);

Fkl = �k(1)�l(1);

and

Gkl = �k(1)�l(�1):

We note that the matrices E; F , and G are of rank one. Furthermore,

Kkl =

Z 1

�1

�l(x)
d

dx
�k(x) dx = �l(1)�k(1) � �l(�1)�k(�1) �

Z 1

�1

�k(x)
d

dx
�l(x) dx

= Fkl � Ekl �Klk

and hence

K = F � E �K�: (3.1)

We note that if F = E, then the matrix K is anti-symmetric.

3.1 Derivativ



for some set of coe�cients sl. We seek coe�cients ~sl such that

du

dx
=

N
X

l=1

~sl�l(x): (3.2)

Computing the inner product with �k of both sides of (3.2) yields

Z 1

�1

du

dx
�k(x) dx =

N
X

l=1

~sl

�
Z 1

�1

�l(x)�k(x) dx

�

=
N
X

l=1

Skl~sl:

(3.3)

Integrating the left hand side of (3.3) by parts, we have

Z 1

�1

du

dx
�k(x) dx =

h

u(x)�k(x)
i1

�1
�

N
X

l=1

Kklsl: (3.4)

Combining (3.3) and (3.4), we obtain

N
X

l=1

Skl~sl = u(1)�k(1) � u(�1)�k(�1) �
N
X

l=1

Kklsl: (3.5)

Our next step is to express u(�1) via the coe�cients sl. Let us consider the case where we
do not impose any boundary condition. Then using u(�1) =

PN

l=1 sl�l(�1), and inserting
it into (3.5) gives us

N
X

l=1

Skl~sl =
N
X

l=1

sl�l(1)�k(1) �
N
X

l=1

sl�l(�1)�k(�1) �
N
X

l=1

Kklsl

=

N
X

l=1

Fklsl �
N
X

l=1

Eklsl �
N
X

l=1

Kklsl:

(3.6)

By introducing the notation s = [s1; s2; : : : ; sN ]T and ~s = [~s1; ~s2; : : : ; ~sN ]T , we can write the
equation for the derivative matrix as

S~s = (F � E � K)s:

Since the basis functions form a linearly independent set, the matrix S is invertible and the
derivative matrix D is given by

D = S�1(F � E � K): (3.7)
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Using (3.1) we can write D as

D = S�1K�: (3.8)

So far we have not made any assumption about the boundary values of the function u(x)
and the derivative matrix is applicable for arbitrary boundary values. Since the function u(x)
is assumed to be di�erentiable, results using (3.8) will coincide with the classical derivative
except for numerical errors introduced in computing the matrices S�1; F; E, and K.

We next consider the case where we construct the di�erentiation matrix for functions
satisfying boundary conditions. If u(�1) = 0 or u(1) = 0, then the matrices E or F in (3.7)
can be set to zero. Let us de�ne the derivative matrices D+

0 , D�
0 , and D0 as

D+
0 = S�1(F �K); (3.9)

D�
0 = S�1(�E � K); (3.10)

and

D0 = �S�1K: (3.11)

These matrices correspond to the boundary condition u(�1) = 0, u(1) = 0, and u(�1) = 0,
respectively.

Finally, we consider the case with the periodic boundary conditions. If u(�1) = u(1), we
can get two possible derivative matrices from (3.5),

D1 = S�1(G� E � K)

and

D2 = S�1(F �G� � K):

Let us de�ne Dp as

Dper =
D1 +D2

2
:

Using (3.1) we �nd that

Dp =
S�1(G� G� � K +K�)

2
: (3.12)
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3.1.2 Properties

Let us investigate the properties of the di�erentiation matrices derived above. Analytically,
we expect the eigenfunctions of d

dx
with no boundary conditions to be multiples of v(x) = e�x,

where � is a complex number. The location of � in the complex plane determines the
nature of our eigenfunctions. For example, by considering eigenfunctions with pure imaginary
eigenvalues we get oscillatory eigenfunctions (trigonometric functions). We also notice that
the eigenfunctions are smooth.

The case where the di�erentiation operator is restricted to functions vanishing at the
boundaries is more subtle. Clearly, there are no nontrivial solutions of the eigenvalue problem

dv

dx
= �v(x)

v(�1) = v(1) = 0;
(3.13)

and thus no eigenfunctions satisfying the boundary conditions. Nevertheless, the di�eren-
tiation matrix �S�1K derived above is well-de�ned (if S is invertible) and has a set of
eigenvectors. Yet it is impossible to relate its behavior to the eigenvalue problem (3.13) for
the �rst derivative. To connect the derivative matrix �S�1K to the analytic di�erentiation,
we need to consider the singular value problem.

Let us show that the singular vectors are well-de�ned for both the analytical and dis-
cretized di�erentiation operator with zero boundary conditions. Consider the set of equations

8

<

:

du
dx

= �v
d∗

dx
(v) = �u

v(�1) = v(1) = 0
; (3.14)

where due to the boundary conditions, the adjoint di�erentiation operator is given by d∗

dx
=

� d
dx

. Normalized solutions u and v of the �rst two equations in (3.14) are the left and rightthe the1so
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If a = �1, then we have that �k = k�=2 for k 2 �
. If a 6= �1 and k; l 6= 0, then a

straightforward calculation shows that

a =
k + l

k � l

and

� =
k(k � l)�

2l
:

If a 6= �1 and k = 0 or l = 0 then a2 � and � = 0.

3.2 Derivative matrix over a subdivided interval

We extend our approach from the previous section to the construction of derivative matrices
de�ned over multiple intervals joined together. The construction is similar to the one used
for multiwavelets in [1]. We represent functions on such domains by using N smooth basis
functions on each interval. These subinterval representations are independent of each other
and in our construction the derivative operator couples them together.

We begin by introducing the following notation. Let M be a positive integer and let I
denote the interval [�1;�1 + 2M ]. De�ne the subintervals

Il = [�xl; �xl+1] = [�3 + 2l;�1 + 2l];

where l = 1; : : : ;M , and Io = I n fxlgM
l=2. Let f�k(x)gN

k=1 be a basis of G de�ned in
De�nition 19 and de�ne f�kl(x)gk;l for k = 1; : : : ; N and l = 1; : : : ;M by

�kl(x) =

�

�k(x � 2l + 2) x2Il

0 x 62Il :

Let GM denote the linear span of f�kl(x)gk;l equipped with the inner product

(u; v) =

Z �1+2M

�1

u(x)v(x) dx:

We will refer to fxlgM
l=2 as the interfaces. Note that �kl(�xl) = �k(�1) and �kl(�xl+1) = �k(1).

It follows that
Z �xl+1

�xl

�jl(x)�il(x) dx = Sij
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and

Z �xl+1

�xl

�jl(x)
d�il(x)

dx
dx = Kij

where Sij and Kij are given in De�nition 19.
Let the function f(x)2GM be written as

f(x) =

M
X

l=1

N
X

i=1

sil�il(x) (3.15)

for some set of coe�cients sil. We note that for each interior interface �xl, there are two
possible expansions available, namely from the left

f(�xl) =

N
X

i=1

si;l�1�i(1) (3.16)

and from the right

f(�xl) =
N
X

i=1

sil�i(�1) : (3.17)

These two expansions correspond to taking the limit from the respective direction.



From (3.19) and (3.15) we get

Z �xl+1

�xl

df

dx
�il(x) dx = f(�xl+1)�i(1) � f(�xl)�i(�1)

�
M
X

l′=0

N
X

j=1

sjl′

Z �xl+1

�xl

�jl′
d�il

dx
dx

= f(�xl+1)�i(1) � f(�xl)�i(�1)

�
N
X

j=1

sjl

Z �xl+1

�xl

�jl

d�il

dx
dx

= f(�xl+1)�i(1) � f(�xl)

(1) � 1)

N



and

df(�xl)

dx
=

N
X

i=1

~sil�i(�1): (3.24)

Unless f is di�erentiable, the derivative df

dx
is not well-de�ned at the interface points. If we

impose that f 2C1(I)\GM , then df

dx
is well de�ned and coincides with the classical derivative.

In the next three sections we impose boundary and interface conditions. It is then conve-
nient to introduce the following notation. For each interval let us de�ne sl = [s1l; s2l; : : : ; sNl]

T

and ~sl = [~s1l; ~s2l; : : : ; ~sNl]
T for l = 1; : : : ;M where the coe�cients sil and ~sil are the expan-

sion coe�cients in (3.15) and (3.18) respectively.

3.2.1 Conditions for the end intervals

In this section we consider the end intervals where boundary conditions may be imposed.
Let us �rst consider arbitrary boundary conditions at the left end point. We have that

f(�1) =

N
X

i=1

si0�i(�1):

When describing f(1), the right end point of the �rst interval, we can choose to take the
limit via (3.17) or (3.16). We consider a weighted contribution from these two expansions
by introducing the parameter a2 [0; 1],

f(1) =

N
X

i=1

(1 � a)si1�i(1) + asi2�i(�1):

Inserting the expansions for f(�1) into (3.22), we obtain

N
X

j=1

Sij~sj1 =

 

N
X

j=1

(1 � a)sj1�j(1) + asj2�j(�1)

!

�i(1) �
 

N
X

j=1

sj1�j(�1)

!

�i(�1)

�
N
X

j=1

Kijsj1

or, equivalently using matrix-vector notation,

S~s1 = ((1 � a)F � E � K) s1 + aGs2 (3.25)

where we used the matrices de�ned in De�nition 19. If f(�1) = 0, then (3.25) reduces to

S~s1 = ((1 � a)F �K) s1 + aGs2: (3.26)
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Let us repeat the same argument for the last interval, IM . We �rst consider arbitrary
boundary conditions at the right end point where

f(�xM+1) =

N
X

i=1

siM�i(1):

In describing f(�xM), the left end point of the last interval, we can choose between (3.17) and
(3.16). We will consider a weighted contribution from these two expansions by introducing
the parameter b2 [0; 1], by

f(�xM ) =
N
X

i=1

(1 � b)siM�i(�1) + bsi;M�1�i(1):

Inserting the expansions for f(�xM+1) and f(�xM) into (3.22) we have

N
X

i=1

Sij~sjM =

 

N
X

j=1

sjM�j(1)

!

�i(1)

�
 

N
X

j=1

(1 � b)sjM�j(�1) + bsj;M�1�j(1)

!

�i(�1)

�
N
X

j=1

KijsjM

or, equivalently, in matrix-vector notation,

S~sM = �bG�sM�1 + (F + (b � 1)E � K) sM: (3.27)

If f(�xM+1) = 0 then the expression in (3.27) reduces to

S~sM = �bG�sM�1 + ((b� 1)E � K) sM: (3.28)

3.2.2 Interior intervals

In this section we consider the interior intervals. We construct the di�erentiation matrix for
the interior intervals using a weighted contribution of the left and right limit at both the left
and right boundary of the interval. At the left and right interface we use the parameters b
and a respectively:

f(�xl) =
N
X

j=1

(1 � b)sj;l�j(�1) + bsj;l�1�j(1)

f(�xl+1) =

N
X

j=1

(1 � a)sj;l�j(1) + asj;l+1�j(�1):

49



Using this expression in (3.22) yields

N
X

j=1

Sij~sjl =

N
X

j=1

(1 � a)sj;l�j(1)�i(1) + asj;l+1�j(�1)�i(1)

�
 

N
X

j=1

(1 � b)sj;l�j(�1)�i(�1) + bsj;l�1�j(1)�i(�1)

!

�



given by

D =

0

B

B

B

B

B

B

B

B

B

B

B

@

rl
0 rl

�1 rl
1

r1 r0 r�1

r1 r0 r�1

. . .
. . .

. . .
. . .

. . .
. . .

r1 r0 r�1

r1 r0 r�1

rr
�1 rr

1 rr
0

1

C

C

C

C

C

C

C

C

C

C

C

A

(3.32)

where each block is an N �N matrix. The elements of the blocks are given by (3.25)-(3.31)
and for some blocks, we can use (3.1) to simplify the expression. We summarize the structure
of the blocks in Tables 3.1-3.3.
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Table 3.1: Stencil for the derivative matrix at the left boundary.







where we used (3.1) for the diagonal blocks. From Section 3.2.1 we see that the operators
F and E evaluates a function at the right and left endpoint of the subinterval, respectively.
The operator G evaluates a function at the left endpoint on the adjacent subinterval to the
right, and G� evaluates a function at the right endpoint on the adjacent subinterval to the
left. From De�nition 20 we have that K� di�erentiates a function at a subinterval. Assuming
eigenfunctions on the form (3.33), 25 0 Td
(w)Tj
8.03252 0 Td3 Td
(diagonal)Tj
47.





4.1.1 Construction of derivative matrices

The matrix K representing the inner products of basis functions with the �rst derivative of
basis functions can be obtained by using (2.21)-(2.25). Let f�kgk denote a set of quadrature
nodes. By introducing the diagonal matrix � with the diagonal elements �kk = �k it follows
that

K = icHQTW�~SWQH: (4.1)

where H, Q, ~S, and W are de�ned in (2.21)-(2.24). Let us summarize the steps to construct
derivative matrices in following algorithm.

Algorithm: Construction of derivative matrices with respect to bandlimited func-
tions

1. Construct N quadrature nodes and weights according to De�nition 11.

2. Construct the matrix S according to (2.27), the matrix K according to (4.1), and the
matrices E, F , and G in De�nition 19 by using (2.21)-(2.25). Construct the matrices
Pc and P�1

c according to (2.31).

3. Construct the derivative matrix D for single intervals by using De�nition 20, and for
multiple intervals by using (3.32) and Tables 3.1-3.3.

4. Compute ~D = PcDP
�1
c to represent the derivative matrix with respect to function

values.

4.1.2 Accuracy of the derivative matrix for varying bandwidth

Using the algorithm above, we present two graphs that





We note from Figure 4.1 that the error pro�le is almost uniform for jbj � c. It is also
clear that we trade accuracy for bandwidth. A derivative matrix constructed for low accuracy
gives a good approximation within a larger bandwidth than a derivative matrix constructed
for a higher accuracy.

In the second experiment we use 64 nodes corresponding to the Nyquist frequency 32� (for
periodic functions). We construct four derivative matrices with the bandwidth c set to 18:5�,
20:5�, 23�, 8





4.1.3 Comparison with pseudo-spectral methods and finite differ-
ences

Let us now compare the derivative matrix constructed using approximate prolate spheroidal
wave functions to a second order �nite di�erence derivative matrix and to a spectral derivative
matrix with respect to Chebyshev polynomials. First, we construct such derivative matrices
using 32 nodes corresponding to a Nyquist frequency of 16�. We construct two derivative
matrices with respect to approximate prolate spheroidal wave functions. We construct one
derivative matrix with the accuracy � = 10�7 and bandwidth c = 8:5�, and another with
the accuracy � = 10�13 and bandwidth c = 5:5�. For comparison, we construct a second
order central �nite di�erence derivative matrix using a second order boundary stencil for
the �rst and the last row of the matrix. Finally, we construct a spectral derivative matrix
with respect to the �rst 32 Chebyshev polynomials using the algorithm in [25, Appendix C].
We di�erentiate the function f(x) = sin(bx) for 200 values of b ranging between �16� and
evaluate the result at 32 equally spaced grid points (including the endpoints) on the interval
[�1; 1]. The result is shown in Figure 4.4.
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We next consider an experiment
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using approximate prolate spheroidal wave functions, it makes sense to apply a projection
operator to the derivative matrix to remove spurious eigenvalues.

Consider the eigenvalue problem
�

Du = �u
u(�1) = u(1)

: (4.3)

It is easily seen that

uk(x) = eik�x

for k = 0; 1; : : : are eigenfunctions to (4.3) with the corresponding eigenvalues

�k = ik�:

Let us consider a discretization of D obtained by the methods in Section 3.1 using ap-
proximate prolate spheroidal wave functions of bandwidth c as the basis. The eigenfunctions
of the discretized problem will mimic the eigenfunctions uk(x). Our choice of basis functions
will give good approximations of uk(x) for all k = 0; 1; : : : such that k� � c. For k such that
c
�
< k � N the eigenvectors will still "attempt" to describe the corresponding eigenfunc-

tions uk(x), but the accuracy of these approximations will rapidly decrease with increasing k.
Therefore, the eigenvectors corresponding to eigenfunctions uk(x) for k > c

�



Then the projected matrix ~D is given by

~D =
N
X

j�kj�c

�kPk:

As an alternative, one can also use the sign iteration method described in Section 7.2.
A derivative matrix with periodic boundary conditions based on approximate prolate

spheroidal wave functions is given as follows.

Algorithm: Derivative matrix with respect to approximate prolate spheroidal
wave functions with periodic boundary conditions

1. Construct N quadrature nodes and weights according to De�nition 11.

2. Construct the matrix S according to (2.27), the matrix K according to (4.1), and the
matrices E, F , and G de�ned in De�nition 19 by using (2.21)-(2.25). Construct the
matrix Pc and P�1

c according to (2.31).

3. Construct the derivative matrix D with periodic boundary conditions for single in-
tervals by using De�nition 20, and for multiple intervals by using (3.32) and Tables
3.1-3.3.

4. Project D to obtain

Dproj =

j�k j� cjj
/R42f011 Tf
4.56001 1.4396 0  4oj,



4.3.1 Properties of the derivative matrix

Let us denote the derivative operator with arbitrary boundary condition as D, and the
derivative operator with zero boundary condition as D0. We de�ne the linear operator L0

as L0 = DD0 and consider the eigenvalue problem
�

L0u = �u
u(�1) = u(1) = 0

: (4.4)

It is easily seen that

uk(x) = sin

�

k�

2
(x+ 1)

�

for k = 1; 2; : : : are eigenfunctions to (4.4) with the corresponding



2. Construct the matrix S according to (2.27), the matrix K according to (4.1), and the
matrices E, F , and G de�ned in De�nition 19 by using (2.21)-(2.25). Construct the
matrix Pc and P�1

c according to (2.31).

3. Construct the derivative matrix D with arbitrary boundary conditions for single in-
tervals by using De�nition 20, and for multiple intervals by using (3.32) and Tables
3.1-3.3.

4. Construct the derivative matrix D0 with zero boundary conditions for single intervals
by using De�nition 20, and for multiple intervals by using (3.32) and Tables 3.1-3.3.

5. Compute L0 = DD0.

6. Project L0 to obtain

Lproj =
X

j�kj�c2

�kekf
T
k

where ek and fk are the left and the right eigenvector of L0, respectively, scaled such
that fT

k ek = 1.

7. Compute ~L0 = PcLprojP
�1
c to represent the derivative matrix with respect to the

interpolating basis.

4.3.3 Numerical results

Using the algorithm above, we present two experiments that illustrate the accuracy of the
second derivative matrix with zero boundary conditions. In the �rst experiment we use 32
nodes. Note that the Nyquist frequency for 32 nodes corresponds to the bandwidth c = 16�
(for periodic functions). We construct four derivative matrices with the bandwidth c set
to 5:5�, 7�, 8:5�, and 10:5�, respectively. In order to obtain these bandwidths using 32
nodes, we set the accuracy � to 10�13, 10�10, 10�7, and 10�4, respectively. We di�erentiate
the function f(x) = sin bkx where bk = corresponds � 10 to (4.1), =t 1.98.4252 Tf
6.599d
(results)Tj
/R36 11rd
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Figure 4.8: Relative error (log10) for the second derivative of the function sin bkx where
bk = k�=2 for k = 1; : : : ; 32. The derivative matrices are constructed with respect to
32 basis functions. We use a basis of approximate prolate spheroidal wave functions with
maximum bandwidth c = 10:5� (thick solid curve), c = 8:5� (thin solid curve), c = 7�
(dotted curve), and c = 5:5� (dashed curve). The error of each di�erentiation is measured
at 32 equally spaced points (including the end points) on the interval [�1; 1].
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Figure 4.9: Relative error (log10) for the second derivative of the function sin bkx where
bk = k�=2 for k = 1; : : : ; 64. The derivative matrices are constructed with respect to
32 basis functions. We use a basis of approximate prolate spheroidal wave functions with
maximum bandwidth c = 26� (thick solid curve), c = 23� (thin solid curve), c = 20:5�
(dotted curve), and c = 18:5� (dashed curve). The error of each di�erentiation is measured
at 64 equally spaced points (including the end points) on the interval [�1; 1].
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4.4.1 Construction of the integration matrix

Let f�kgN
k=1 denote a set of quadrature nodes de�ned in De�nition 11. If N is even, the

symmetry of the nodes guarantees that all nodes are non-zero. If N is odd one quadrature
node is zero. De�ne the matrix ~T with elements de�ned by

~Tkl =

Z �k

�1

eic�lx dx =

�

eicθkθl �e−icθl

ic�l
; k 6= N+1

2

�k + 1; k = N+1
2

: (4.5)

for k; l = 1; : : : ; N . Note that if N is even, only the �rst case applies. Using (2.14) we �nd
that

Z �k

�1

	l(x) dx = Hkk

N
X

m=1

WmmQml
~Tkm

The integration matrix based on approximate



In the second experiment we use 64 nodes corresponding to the Nyquist frequency for
c = 32� (for periodic functions). We construct four integration matrices with the bandwidth
c set to 18:5�, 20:5�, 23�, and 26�, respectively. In order to obtain these bandwidths using
64 nodes, we set the accuracy � to 10�13, 10�10, 10�7, and 10�4, respectively. Let f�kg64

k=1 be

a set of quadrature nodes for bandlimited functions. We compute the integrals
R �k

�1
eibx dx

for 200 values of b ranging between �32�. Note that this includes non-periodic functions.
The result is shown in Figure 4.12.
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Chapter 5

Low rank representations of operators

In this thesis we propose a scheme to solve the acoustic equation using a semi-group ap-
proach. If the spatial operator L in the acoustic equation is time independent, then we
solve the equation by computing the matrix exponential etL using the scaling and squaring
method (see Golub and Van Loan [29]). This technique shifts the di�culty into the question
of representing the operators so that we can control the complexity of the computations.
We also need to maintain an e�cient operator representation for relatively large time steps
t. If the spatial operator is time dependent, we write the di�erential equation as an integral
equation, and use an iterative scheme to solve such equation. Using the matrix exponen-
tial allows large time steps and assures high accuracy. However, the matrix operations are
computationally expensive since we need to perform a large number of matrix-matrix mul-
tiplications to compute etL. Computing the matrix exponential in two dimensions directly
becomes prohibitively slow even for moderate sizes. The computational cost for a matrix-
matrix multiplication in d dimensions grows as O(N 3d).

In order to overcome the prohibitive computational costs for solving PDEs using the semi-
group approach in two or higher dimensions, we need an e�cient operator representation.
Such multidimensional operator calculus has been introduced by Beylkin and Mohlenkamp
[7], and in this chapter we review their work for two dimensional problems. If L is an operator
in two dimensions, then the separated representation decomposes the operator L as

L =
r
X

k=1

skAk 
 Bk (5.1)

where sk > 0 are scalars, and Ak and Bk are matrices in one dimension. If the separation
rank in (5.1), r, is small, then the separated representation decomposes the operator L to
a short sum of operators in one dimension, thus, greatly reducing the computational cost.
In Chapter 6 we demonstrate that we can solve the acoustic equation e�ciently in two
dimensions using this representation.
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O(N4) operations and a matrix-matrix multiplication costs O(N 6) operations. If the matri-
ces acting in the two directions are banded such that all entries outside the distance b=2 from
the diagonal are zero, then the computational cost for matrix products is O(b4N2) which
is still too expensive for solving PDEs. Also, the bandedness of a matrix is not preserved
under matrix-matrix multiplications.

The approach in [7] generalizes the usual technique of separation of variables. For exam-
ple, consider the Laplacian operator in two dimensions which we write as

� = Dxx 
 I + I 
Dyy

where Dxx and Dyy denote second derivatives, and I denotes the identity operator. The
left and the right factors in the tensor products act in the x- and y-directions, respectively.
Even if we represent the second derivatives and the identity operator as dense matrices,
this representation still requires only 4N 2 elements to be stored. Generalizations of such
representations in higher dimensions have been studied in [7]. In this thesis, we will consider
the two dimensional case, but our methods can be generalized to higher dimensions using
the algorithms in [7].

Let L : � N2 ! � N2
be a linear operator. Let fAkgr

k=1 and fBkgr
k=1 be N -by-N matrices,

and fskgr
k=1 be scalars, such that

L =
r
X

k=1

skAk 
Bk:

We refer to this sum as a separated representation of L of rank r. Note that we can always
�nd a representation such that r � N 2. The number of elements in a separated representation
is given by 2rN 2 + r.

This de�nition is speci�c for two dimensions, and has no analogue in higher dimensions.
In many applications, it su�ces to �nd an approximation to L in a separated form. Therefore
we will use

De�nition 21 (Separated representation) For the accuracy � > 0, we de�ne the sepa-
rated rank representation of an operator L as

~L =

~r
X

k=1

skAk 
 Bk

such that

kL� ~Lk < �:
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Usually, we construct the representation such that sk > 0, kAkk = 1, and kBkk = 1. This
de�nition is su�cient for numerical purposes, and generalizes in higher dimensions [7]. In
many cases ~r � r.

In one and two dimensions, these two de�nitions are connected by the SVD, namely, by
dropping terms in the SVD expansion we can match the two de�nitions within a precision
determined by the singular values. The SVD in one dimension, L =

P

k �kekf
�
k , has the

property that the left factors ek span the column space (range) of A, and the right factors
fk span the row space of A. Hence, in a sense the SVD separates the input from the output.
This is not the case for the separated representation in higher dimensions where the left and
the right factors separates the action of L into di�erent directions, but does not separates
the input from the output.

As suggested by Beylkin and Mohlenkamp [8], we replace the orthogonality with the
weaker requirement that the separation condition number of the operator L de�ned as

� �
Pr

k=1 sk

kLk ;

is low. (Here we assume that sk > 0 and that Ak and Bk are normalized.)

5.1.1 Operator calculus using the separated rank representation

If u2 � N2
is a vector in two dimensions, stored as a two dimensional array, (or equivalently,

as a matrix in one dimension), then the matrix-vector product in two dimensions can be
computed by

Lu =
r
X

k=1

skAkuB
T
k : (5.3)

In other words, the matrix Ak acts upon the columns of u, and Bk acts upon the rows of
u. The computational cost for a matrix-vector multiplication in two dimensions is given by
O(rN3).

Let us consider examples of linear algebra operations for this representation. Let L1 =
Pr1

k=1 s
(1)
k A

(1)
k 
 B

(1)
k and L2 =

Pr2

k=1 s
(2)
k A

(2)
k 
 B

(2)
k . We compute linear combinations by

�L1 + �L2 =

r1+r2
X

k=1

~sk
~Ak 
 ~Bk; (5.4)

where

f~skgr1+r2

k=1 = f�s(1)
1 ; : : : ; �s(1)

r1
; �s

(2)
1 ; : : : ; �s(2)

r2
g;
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f ~Akgr1+r2

k=1 = fA(1)
1 ; : : : ; A(1)

r1
; A

(2)
1 ; : : : ; A(2)

r2
g;

and

f ~Bkgr1+r2

k=1 = fB(1)
1 ; : : : ; B(1)

r1
; B

(2)
1 ; : : : ; B(2)

r2
g:

The rank is reduced using the algorithm in Appendix B.1. Typically, the approximate rank
~r is signi�cantly less than r1 + r2.

Similarly, the matrix product of the two separated representations L1 and L2 is computed
as

L1L2 =

r1
X

k=1

r2
X

l=1

s
(1)
k s

(2)
l

�

A
(1)
k A

(2)
l

�



�

B
(1)
k B

(2)
l

�

: (5.5)

We note that its rank is r1r2. Again, we use the algorithm in Appendix B.1 to reduce the
rank of the matrix product after each addition in (5.5). Typically, the approximate rank ~r
is signi�cantly less than r1r2.

5.1.2 Separated representation of operators for point wise multi-
plication

Operators representing pointwise multiplication are needed when considering the acoustic
equation utt = Lu with variable coe�cients, where

L =
1

�(x; y)

@

@x

�

�(x; y)
@

@x

�

+
1

�(x; y)

@

@y

�

�(x; y)
@

@y

�

:

Consider a multiplication operator F represented by the function f(x; y) such that if u is
function of two variables, then

Fu(x; y) = f(x; y)u(x; y):

If we discretize such an operator on an N -by-N mesh we can represent F by the following
proposition.

Proposition 22 A point wise multiplication operator F representing a function f on an
N-by-N mesh, can be represented as

F =
r
X

k=1

�kUk 
 Vk:

where Uk and Vk are diagonal matrices.
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Proof. Represent f by its SVD,

f =
r
X

k=1

�kukv
�
k

where uk and vk are the left and right singular vectors, respectively. The proposition follows
by constructing the diagonal operators Uk = diag(uk) and Vk = diag(vk).

�

5.2 The Partitioned Low Rank (PLR) representation

In this section we introduce the Partitioned Low Rank (PLR) representation. This rep-
resentation turns out to be e�cient for many di�erential operators and functions of such
operators. The idea of the PLR representation has been used by Rokhlin et al. ([34], [31],
and [48]), for the fast multipole method, and for spectral projectors by Beylkin et al. [10].
The exponential of a matrix with pure imaginary spectrum and the bandlimited derivative
matrix constructed in Chapter 4 are of high rank, dense, non-Toeplitz, and highly oscillatory.
For exponentials of operators with pure imaginary spectrum there is no decay of modes as
time increases. Unlike operators with real, negative spectrum, exponentials of such operators
are not necessarily compressible via the wavelet transform while the PLR representation is
e�cient for functions of di�erential operators even when wavelet or multiwavelet transforms
are dense. In Chapter 6 we apply the technique to exponentials of operators with pure
imaginary spectrum, and in Chapter 7 we apply the representation to spectral projectors.

The idea of the PLR representation can be described heuristically as follows. A dense
matrix acting on a vector couples all elements of the vector it acts upon. Interaction between
elements of the vector set apart roughly by size are of low rank, while interaction between
nearby elements are of high rank.

De�nition 23 (PLR representation) Let A be an ~N -by- ~N matrix where ~N is even. Par-

tition A into four
~N
2
-by-

~N
2

blocks. Decompose the o�-diagonal blocks into the separated rep-
resentation

B =

r
X

k=1

skekf
�
k :

We refer to this partition as a level one PLR representation of A.
Let L be an N-by-N matrix for N = K2M where K is odd and M is a positive integer.

Let m � M . A level m PLR representation of L is de�ned by the following algorithm.
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For k = 1 : m

For l = 1 : 2k�1

Apply a level one PLR representation to the diagonal block of L given by the
elements Lij; i;



A =

D1

D2

D3

D4

D5

D6

D7

D8

U3
1

U3
2

U3
3

U3
4

U2
1

U2
2

U1
1

L3
1

L3
2

L3
3

L3
4

L2
1

L2
2

L1
1

Dl are dense matrices

Uk
l =

Pr
(U)
kl

i=1 (�kl)i(ekl)i(fkl)
�
i

Lk
l =

Pr
(L)
kl

i=1 (�kl)i(gkl)i(hkl)
�
i

Figure 5.2: Illustration of a level three PLR representation. The diagonal blocks are dense
and the o�-diagonal blocks are given as separated representations where �kl and �kl are
scalars, and ekl, fkl, gkl, and hkl are vectors.
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the PLR representation, the coe�cients sk in the separated representation of the o�-diagonal
blocks decays rapidly in magnitude. In such cases, the sum in the separated representation
can be truncated. In the following theorem, we estimate the threshold value we



�

To further justify the use of the PLR representation we review an example from [7]. Accord-
ing to the Christo�er-Darboux formula, the separated sum

n
X

k=0

pk(x)pk(



matrix-vector products of the type Lk
l ~u and Uk

l ~u where ~u2 � Nk , and Lk
l and Uk

l are Nk-by-
Nk matrices given as separated representations on the form

P

i �ieif
�
i . If Lk

l =
Pr

i=1 sieif
�
i

then the matrix-vector product Lk
l u is computed by the formula

Lk
l u =

r
X

i=1

si < u; fi > ei: (5.8)

Since the computational cost of the inner product is O(Nk), the total cost of such a matrix-
vector multiplication scales as O(rNk). The full algorithm for the matrix-vector multiplica-
tion is given in Appendix B.2.

In order to compute linear combinations and products of two PLR representations, we
need the following results. Let L1 =

Pr1

k=1 s
(1)
k e

(1)
k f

(1)∗

k and L2 =
Pr2

k=1 s
(2)
k e

(2)
k f

(2)∗

k . We
compute a linear combination by

�L1 + �L2 =

r1+r2
X

k=1

~sk~ek
~f �
k (5.9)

where

f~skgr1+r2
k=1 = f�s(1)

1 ; : : : ; �s(1)
r1
; �s

(2)
1 ; : : : ; �s(2)

r2
g;

f~ekgr1+r2
k=1 = fe(1)

1 ; : : : ; e(1)r1
; e

(2)
1 ; : : : ; e(2)r2

g;

and

f ~fkgr1+r2
k=1 = ff (1)

1 ; : : : ; f (1)
r1
; f

(2)
1 ; : : : ; f (2)

r2
g:

The rank is reduced using the algorithm in Appendix B.1. Typically, the approximate rank
~r is signi�cantly less than r1 + r2.

Similarly, the matrix product of the two separated representations L1 and L2 is given by

L1L2 =

r1
X

k=1

r2
X

l=1

s
(1)
k s

(2)
l < e

(2)
l ; f

(1)
k > e

(1)
k f

(2)∗

l : (5.10)

We note that its rank is r1r2. Again, we use the algorithm in Appendix B.1 to reduce
the rank of the matrix product after each addition in (5.5). Typically, the approximate
rank ~r is signi�cantly less than r1r2. In both (5.9) and (5.10) we note that the structure
of the separated representation is preserved under linear combinations and multiplications,
respectively. That is, if the input is given as separated representations, then the output is
also given as a separated representation.
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Figure 5.3: Time ratio for computing the square of the matrix in (5.7) using dense multipli-
cation compared with PLR multiplication.
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Chapter 6

Numerical solutions to the acoustic
equation in two dimensions

In this chapter we use the tools from this thesis to construct a numerical scheme for solving
the acoustic equation in two dimensions. Let us consider

�(x; y)utt = (�(x; y)ux)x + (�(x; y)uy)y + F (x; y; t); (x; y)2D; t2 [0;1)

u(x; y; 0) = f(x; y)

ut(x; y; 0) = g(x; y)

uj@D = h(x; y)

(6.1)

where D is a rectangle. The function �(x; y) is the compressibility of the medium, and the
function �(x; y) denotes the speci�c volume (the inverse of density).

Iserles [33] gives an overview of �nite di�erence methods for solving hyperbolic problems,
and Fornberg [25] discusses the use of pseudo-spectral methods. Alpert et al. use a method
related to the spherical means representation to construct a numerical scheme for the wave
equation in [2].

Let us �rst write the acoustic equation (6.1) as a �rst order system in time. ThisforerviewhTj
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In the �rst two sections we review the �rst order formulation of the acoustic equation and
the semi-group approach. In the �nal section we present our algorithm and provide a number
of numerical results with constant and variable coe�cients. Our scheme is compared to a
fourth order scheme using the fourth order �nite di�erence stencil in space and the explicit
Runge-Kutta scheme of order 4 (RK4) in time.

6.1 The acoustic equation in two dimensions as a first

order system

Our �rst step is to convert (6.1) to a �rst order system in time. We follow the derivation
by Bazer and Burridge [3] for hyperbolic equations. Once the equation is given in the form
ut = Lu, we can use either a traditional time stepping scheme for �rst order ODEs, such as
the RK4, or we can solve the equation by computing the exponential etL.

By introducing functions v and w, we write the acoustic equation (6.1) as

2

4

v
w
u

3

5

t

=

2

6

4

0 0 �(x; y)[ @b

@x

 Iy]

0 0 �(x; y)[Ix 
 @b

@y
]

1
�(x;y)

[ @
@x


 Iy]
1

�(x;y)
[Ix 
 @

@y
] 0

3

7

5

2

4

v
w
u

3

5

+

2

4

0
0

R t

0
F (x; y; �) d�

3

5 � Lu + F;

(6.2)

where the operators @
@x


 Iy and Ix 
 @
@y

are de�ned by

[
@

@x

 Iy]u(x; y) � ux(x; y) and [Ix 
 @

@y
]u(x; y) � uy(x; y) ;

and the left and right factors are operators in one dimension acting upon x and y variables,
respectively. Here @b

@x
and @b

@y
denote di�erentiation operators with boundary conditions

imposed in the x and y direction, respectively. We note that @
@x

and @b

@x
, and @

@y
and @b

@y
, do

not generally commute. In Appendix C.1 we look closer at the meaning of @
@x


 Iy when the
domain is composed of subdomains where each subdomain has its set of basis functions.

We will use (6.2) when solving the acoustic equation by using the bandlimited functions.
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As an alternative, we can write (6.1) as

�

v
u

�

t

=

"

0 1
�

�

@
@x

�

� @b

@x

�


 Iy + Ix 
 @
@y

�

� @b

@y

��

Ix 
 Iy 0

#

�

v
u

�

+

�

F
0

�

� Lu + F

(6.3)

which we use to construct the fourth order scheme.

6.2 The semigroup approach

In this section we use (6.2) to construct a numerical scheme based on the semigroup approach.
The semigroup approach for PDEs is described by, e.g., Yoshida [57] and Evans [23]. Nu-
merical schemes for the semigroup approach for parabolic PDEs and the advection-di�usion
equation have been developed by Beylkin and Keiser [5], and by Alpert et al. [1].

We can write (6.2) and (6.3) as

ut = Lu + F

u(0) = u0

(6.4)

where u = [v w u]T (for (6.2)), u = [v u]T (for (6.3)), and L is the linear operator on the
right-hand side of equations (6.2) and (6.3). From now on we assume that (6.4) is discretized
in space resulting in a �nite dimensional system of ODEs.

The equation (6.4) is solved by

u(t) = P (t)u0 + P (t)

Z t

0

P (�)�1F(�) d�

where the propagator P (t) is an invertible matrix of the same dimensions as L solving the
integral equation

P (t) = I +

Z t

0

L(�)P (�) d�:

If L is time independent, then P (t) = etL. The propagator P (t) = etL is continuous with
respect to time and has the properties P (0) = I and P (t+ s) = P (t)P (s) = P (s)P (t) which
gives the propagator the semigroup property. The main di�culty in using this approach as a
numerical scheme is to control the complexity of the computation of the matrix exponential.
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6.3 Numerical results

In this section we provide examples of wave propagation in two dimensions. We will com-
bine the techniques from previous chapters. We construct L using derivative operators for
bandlimited functions with boundary and interface conditions incorporated according to
Chapter 3 and propagate the solution by applying the matrix exponential etL. We refer
to this scheme as the bandlimited semigroup method and give the details of the algorithm
below.

We compare the resulting scheme to a fourth order �nite di�erence (FD4) scheme where
we propagate the solution in time by using the RK4 scheme. For both schemes we display
the accuracy for the case with constant coe�cients where we compare the result with the
exact solution. In addition, we provide examples with variable coe�cients. For variable
coe�cients we cannot compare the solution to the exact solution, but we provide image
sequences that illustrate that the solution using the bandlimited semigroup method behaves
in the expected manner. In contrast, we demonstrate how the fourth order scheme generates
artifacts associated with numerical dispersion.

6.3.1 The bandlimited semigroup method

Let us describe a numerical scheme for solving the homogeneous acoustic equation (6.1) in
two dimensions with time independent coe�cients.
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good compromise between an e�cient representation of the matrix exponential and a small
number of time steps in Step 7 of the algorithm.

For this scheme we solve the equation at the quadrature nodes (x; y) = (�k; �l) used for
the bandlimited representation. For illustrations, before displaying the solution as a picture,
we interpolate the result to an equally spaced grid using the matrix C in Section 2.6.4.

6.3.2 Comparison of the results

We compare the bandlimited semigroup method to two other methods. In the �rst compar-
ison we use the algorithm in Section 6.3.1, but replace Step 6 and 7 with the explicit RK4
solver in time. In the second comparison we write the acoustic equation (6.1) as a �rst order
system in time using (6.3), and discretize it in space using the fourth order �nite di�erence
stencil. We solve the equation on an equally spaced grid including the endpoints. We use
fourth order boundary stencils which we construct according to [25] and use the explicit RK4
solver in time.

To evaluate the performance of our method we introduce the following characteristic time
and length scales. Consider the equation

8

>

>

<

>

>

:

u



Comparison of accuracy and speed

For the experiments in this section, we solve

8

>

>

>

<

>

>

>

:

utt = uxx + uyy; (x; y)2(�1; 1) � (�1; 1)

u(x; y; 0) = sin
�

�(x+1)
2

�

sin
�

�(y+1)
2

�

+ sin (b(x + 1)) sin (b(y + 1))

ut(x; y; 0) = 0
u(�1; y) = u(x;�1) = 0

; (6.5)

where b = k�=2 for some integer k > 1, and the solution is given by

u(x; y; t) = sin

�

�(x+ 1)

2

�

sin

�

�(y + 1)

2

�

cos(
�p
2
t)

+ sin (b(x + 1)) sin (b(y + 1)) cos(
p

2bt):

We note that this solution contains both low frequency (the �rst term) and high frequency
(the second term) modes. For the experiments in this section, we measure the error of the
vector u = [v w u]T when using a bandlimited scheme, and the error of the vector u = [v u]T

when using the fourth order scheme. The functions v and w are de�ned in Section 6.1. We
measure the error using the relative max norm, that is, if ~u approximates the exact solution
u, then

error =
ku � ~uk1

kuk1
:

In the �rst experiment, we solve (6.5) using b = 22:5�. We propagate the solution
and evaluate the error over a range of 1 � 104 characteristic periods, and also record the
computational (CPU) time it took to produce the solution.

For the bandlimited semigroup method , we construct quadrature nodes and weights for
the bandwidth c = 23� which corresponds to an oversampling factor of approximately 1:4
for periodic functions. We set the accuracy in the construction to � = 10�7 resulting in 64
nodes, and select the time step �t =

p
2

23
corresponding to approximately 0:98 characteris-

tic periods, and represent the operator using the separated and PLR representations from
Chapter 5. This gives the separation rank 5 for the blocks in the exponential operator. For
the comparison method, we use the same spatial discretization as for the bandlimited semi-
group method, but use the RK4 solver in time with the timestep �t

128
. The result is shown in

Figure 6.1. We see that the bandlimited semigroup method is signi�cantly faster than the
other method.

In order for the fourth order scheme to reach similar accuracy, we need more than 1024
samples in space corresponding to an oversampling factor of approximately 22 (for periodic
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functions) and a timestep t = �t
128

. With this sampling rate, the computational time per
characteristic period is almost four minutes, or more than 5000 times slower than the ban-
dlimited semigroup method. However, such oversampling factor is signi�cantly larger than
is typically used. In the next experiment, we therefore solve the same equation as in the pre-
vious experiment, but use 400 samples in space for the fourth order scheme, corresponding
to an oversampling factor of approximately 8:7 (for periodic functions), and a timestep �t

32
.

For the bandlimited semigroup method we use the same data as in the previous experiment.
The result is shown in Figure 6.2. In this experiment, the computational times for the two
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(6.5) using the bandlimited semigroup method for the bandwidth c = 20� with 52, 56, 60,

64, and 68 nodes. For all solutions, we use the time step �t =
p

2
20

(approximately one
characteristic period). The result is shown in Figure 6.3. We observe that using 60 nodes
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Figure 6.3: Relative error (log10) in the max-norm for approximating the solution to (6.5)
for b = 20� using two di�erent sampling rates (top). The CPU time for propagating the
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of which correspond to right-traveling waves. Solutions of this equation take the form

u(x; t) = ei!(x�ct);

which we refer to as a Fourier mode of frequency ! traveling to the right with velocity c.
Exact di�erentiation of this solution yields

@

@x
u = i!ei!(x�ct):

If the error in the representation of the di�erentiation operator is of the form

@

@x
u ’ if(!)ei!(x�ct);

then the Fourier mode propagates with the velocity cf(!)=!. Unless f(!) = !, which
corresponds to the exact di�erentiation, the Fourier modes of di�erent frequencies travel with
di�erent velocities. For example, in the case of the second order centered �nite di�erence
approximation of the derivative, f(!) = sin(!).

In this section we compare numerical dispersion using the bandlimited semigroup method
and the fourth order comparison scheme described in Section 6.3.2. Let us solve

8

>

>

<

>

>

:

utt = uxx + uyy; (x; y)2(�2; 2) � (�2; 2)
u(x; y; 0) = sinc2 (27�x) sinc2 (27�y)
ut(x; y; 0) =



t=0 t=40

t=84 t=128

Figure 6.4: Solution of (6.6) using the bandlimited semigroup method. The shape of the
pulse is maintained throughout the propagation.
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t=0 t=40

t=84 t=128

Figure 6.5: Solution of (6.6) using a fourth order scheme. Note the ripples near the wave
front which are caused by numerical dispersion.
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6.3.4 Numerical results for variable coefficients

In this section we solve the acoustic equation for variable coe�cients. Since we do not have
an analytical solution to the equation, we evaluate the methods by displaying a sequence of
images and study the shape of the pulse as it propagates throughout the domain. Let us
solve

8

>

>

<

>

>

:

utt = 1
�(y)

(uxx + uyy) ; (x; y)2(�1; 1) � (�1; 1)

u(x; y; 0) = e�1000(x2+y2)

ut(x; y; 0) = 0
u(�1; y) = u(x;�1) = 0

(6.7)

where

�(y) =
1

1 � sin(�(y+1))
2

:

The solution is a sharp pulse originating at the origin of the domain, and expanding out
wards with varying velocity.

For the bandlimited semigroup ansemiquadratuj
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t=0 t=40

t=90 t=256

Figure 6.6: Solution of (6.6) using the bandlimited semigroup method.
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t=0 t=40

t=90 t=256

Figure 6.7: Solution of (6.6) using a fourth order scheme. Note the ripples which are caused
by numerical dispersion.
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Chapter 7

Wave propagation on space-like
surfaces

In this chapter we consider wave propagation on space-like surfaces. This problem appears,
for example, in solving the inverse problem for acoustic wave propagation. Let us consider
the equation

1

�(x)
�u+ !2(1 + f(x))u = 0; !2 �

; x2 � n

u(x) = ei!x�� + w(x); jj�jj = 1

(7.1)

where w(x) satis�es the Sommerfeld radiation condition and �(x) = 1 for x outside some
bounded domain. We refer to ei!x�� as the incident wave and � as the background compress-
ibility. The wave velocity is given by 1=

p
�.

For the inverse problem, our goal is to determine the scatterer f , where u is known
at a boundary outside the scatterer. The inverse problem for acoustics in two and three
dimensions has been studied extensively, see Colton and Kress [15], Natterer and W�ubbeling
[44], and Chen [14], and references therein. In this thesis, weTd
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solution u(y) to the equation

uyy = Au; y � 0

u(0) = u0

uy(0) = v0

(7.3)

is stable, that is, there exists a constant K such that ku(y)k � K for all y � 0.

Proof. We �rst write (7.3) as the �rst order system

�

v
u

�

y

=

�

0 A
I 0

� �

v
u

�

� L~u (7.4)

where I is the N -by-N identity matrix. Since A is diagonalizable, there exists an invertible
matrix S such that L = S�1LDS where LD is a diagonal matrix with the eigenvalues � of L
along the diagonal. De�ne w = S~u. Since L is y-independent, S commutes with d

dy
and we of.
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11.9598(of.)Tj
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10754001 -1.8 T1 Td
(y)Tj
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the boundary condition u(�1) = 0, then � = �!2 + k2�2

4
for k = 0; 1; : : : . If � is negative,

then we must have that k�
2

� j!j. Now consider the equation

uyy = �uxx � !2u

with the boundary conditions u(�1) = 0. The solutions to this equation take the form

u(x; y) = sin

�

k�(x+ 1)

2

�

cos

 
r

!2 � k2�2

4
(y + 1)

!

for k = 1; 2; : : : . Hence, it is clear that these solutions are bounded for all y � 0 if k�
2

� j!j.
In other words, by �ltering out high frequency modes in the x-direction, we e�ectively project
the solution onto bounded functions.

7.2 Computation of spectral projectors

In this section we consider the problem of computing spectral projectors. Consider a diago-
nalizable matrix A with pure real spectrum. Given its spectral decomposition

A =
X

k

�kPk

where f�kgk are the eigenvalues of A, and fPkgk are projectors, we construct a fast algorithm
to compute the spectral projector

P (�) �
X

�k<�

Pk

such that

P (�)A =
X

�k<�

�kPk

without computing the individual operators Pk. For self-adjoint matrices, Pk = ekek
T

where ek is the eigenvector corresponding to the eigenvalue �k. For general diagonalizable
matrices, Pk = ekfk

T where ek and fk are the right and left eigenvectors, respectively.
However, constructing the spectral projector by computing eigenvectors can be costly. In
our approach, we use the method by Beylkin et al.[10] where the sign function is computed
by an iterative scheme that only requires matrix-matrix multiplications and additions. This
shifts the di�culty to representing the matrix so that the matrix products can be computed
e�ciently. We use the separated representation and the PLR representation from Chapter 5
to represent the operators so that matrix products can be computed rapidly.
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7.2.1 The spectral decomposition of a diagonalizable matrix

In [10] fast algorithms for computing





we have that xk ! 1 if x0 2(0; 1) and xk ! �1 if x0 2(�1; 0). Since we consider the diagonal
basis, it remains to show that j��ij < 1 for all eigenvalues �i of A. From the assumption on
� it follows that

k� diag(�i)k2 = �kSAS�1k2 � �kSk2kAk2kS�1k2 = � cond(S)kAk2 < 1:

The proof for the case of pure imaginary spectrum is analogous.
�

The theorem above is shown in [10] for self-adjoint matrices where it is also shown that
the number of iterations needed for (7.7) to converge to accuracy � is O(log2(cond(A)) +
O(log2(log2(1=�))).

Using (7.7) we can now compute spectral projectors by a sequence of matrix-matrix
mis

(7W
11.39 03 Td
(e)Tj
10.59556 0Td
(needed)
23.1798 0 Td
(also
10.9120 0 Td
(k)Tfasj
-44227 00 Td
(0)algorithj
9.3579988 Td
(for)Tj
17.6873 0 Td
((7pute)T)Tj
34.540016Td
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39.18.240 Td
(0))Tj
17.2646 0 Td
(of)ductj
39.129341 Td
(and)Tj
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(b)T)Tj
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By introducing the function v, we write (7.2) as

�



Algorithm: Numerical scheme for wave propagation on space-like surfaces

1. Write (7.2) as a �rst order system in time according to (7.9).

2. Construct the derivative matrix L0 = DD0 using the algorithm in Section 4.3, but
without the projection step (see remark below).

3. Compute A = �L0 � �!2(1 + f)I where I denotes the identity operator.

4. Construct the spectral projector P = (I � sign(A))=2 according to Theorem 27.

5. Construct the spatial operator

L =

�

0 PAP
I 0

�

:

6. Select the step size �y (see discussion in Section 6.3.1 on how to choose the step size),
and compute the matrix exponential e�y



where b = k�=2 for some integer k � 1 and ! =
p

b2 + (23�)2. The solution is given by

u(x; y) = sin

�

�(x+ 1)

2

�

cos

 
r

!2 � �2

4
(y + 1)

!

+ sin (b(x + 1)) cos(
p
!2 � b2(y + 1)):

We note that this solution contains both low frequency (the �rst term) and high frequency
(the second term) modes. We measure the error using the relative max norm, that is, if ~u
approximates the exact solution u, then

error =
ku=des.WappT Q
6es+ate
(u)Tj
/R36t2646 03.544
24.2244 00 Td
(th6 tiv)Tj
3  -32.450(�)Tv 1 ==tains



Numerical results for variable coe�cients

Let us solve the Helmholtz equation as an initial value problem for the case with variable
background in the x-direction. Consider the equation

8

>

>

<

>

>

:

uxx + uyy + �(x)(27�)2u = 0; (x; y)2(�1; 1) � (�1; 7)
u(x; 0) = g(x)
uy(x; 0) = 0
u(�1; y) = 0

(7.11)

which simulates the pressure in a wave guide with "soft" (zero pressure) boundary conditions.
We solve this equation using the numerical scheme given earlier in this section using 128
quadrature nodes for the bandlimited functions with the bandwidth c = 54� and the accuracy
� = 10�7. Since we propagate using the exponential, we are free to use any step size
without causing instabilities. However, for this experiment we choose the step size �y = 1

128
,

corresponding to approximately 10 samples per wavelength for easier visualization of the
resulting wave �eld.

For the �rst experiment, we choose a constant background (�1(x) = 1) and the initial
pulse e�1000x2

. We display the resulting wave �eld in the left image in Figure 7.3. The initial
condition can be compared to a wave entering the domain through a "smooth" slit centered
at (x; y) = (0;�1). The wave di�racts and then re
ect at the boundaries.

For the following two experiments, we choose the background coe�cients

�2(x) =
1

q

1 + sin �(x+1)
2

and

�3(x) =
1

r

�

1 + sin�(x+1)
2

�

(1 � 0:9e�100x2)

;

respectively. The pro�le of the compressibility and the velocity 1p
�(x)

are given in Figure 7.2

We use the initial condition g(x) = e�1000(x+0:5)2 for these two experiments and show the
results in Figure 7.3. We note that the waves travel faster in the left part of the domain as
expected, causing the rays to bend. We also note the dark line in the last image due to the
sharp scatterer centered along x = 0.

115





Figure 7.3: Absolute value of the wave �eld from the solution to (7.11) for the three com-
pressibilities �1(x) (top), �2(x) (center), and �3(x) (bottom).
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Chapter 8

A fast reconstruction algorithm for
electron microscopy

In this chapter we summarize the paper "A fast reconstruction algorithm for electron mi-
croscopy" by Beylkin, Mastronarde, and Sandberg [6]. We provide a version of the paper in
Appendix E.

In the paper we consider the problem of three-dimensional tomographic reconstruction
of the density of a biological specimen using transmission electron microscopy. The three-
dimensional problem is solved as a sequence of two-dimensional problems. The specimen is
illuminated by an electron beam and the intensity of the beam is recorded after transmission.
We refer to such a measurement as a projection. The projections are recorded for a range of
angles typically between �70o (due to physical limitations). We model the decay of intensity
of the beam by line integrals and, therefore, interpret the collected data as the (discretized)
Radon transform of the density.

The problem of reconstructing an object by measuring projections has a rich history and
many applications. For example, the x-ray tomography, radio astronomy, as well as seismic
processing are using results of the basic inversion technique �rst considered by Radon [45].
The Radon inversion formula was re-discoveredasfoacngh for x-ray tomography, and

by ell



Fourier space where the polar angles are not necessarily equally spaced. The standard two-
dimensional Fast Fourier Transform (FFT) requires sampling on an equally spaced rectangu-
lar grid and, hence, fast Fourier reconstruction methods require some interpolation scheme
in the Fourier space. Such Fourier based techniques have previously been proposed by, e.g.,
Lanzavecchia and Bellon [41]. They used an improvement of the moving window Shannon
technique (Lanzavecchia and Bellon [40]) to interpolate the data on a polar grid to an equally
spaced square grid in Fourier space. Our approach is di�erent, and involves the Unequally
Spaced Fast Fourier Transform introduced by Dutt and Rokhlin [21], and by Beylkin [4].

The algorithm is described and evaluated in detail in Appendix E, using data sets col-
lected by The Boulder Laboratory for 3-D Electron Microscopy of Cells at University of
Colorado at Boulder. The algorithm has been incorporated into the IMOD software package
[32]. We give an overview of Appendix E in the following section.

8.1 Preliminaries

In Section E.2 of the paper, we formulate the problem. The notation and experimental
set-up is described schematically in Figure E.1. The goal is to estimate the density g(x; z)
of a two-dimensional slice of the specimen at an M -by-N equally spaced grid from the
measurements of transmitted electron beams. We measure the intensity of the electron
beam after transmission through the specimen at the (equally spaced) points t1; : duced ecimenco4.4 Tl774 0 Td
(c“ Tf
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(ro)Tj
15.eansmitted)Tj
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where wl are scalar w





Saxton and Baumeister [49]). The FRC test evaluates the performance in the presence of
noise, and the proposed algorithm and the direct summation method are shown to give
practically identical results according to the FRC test.

Speed comparisons of the two methods are made on three computer architectures; Athlon
MP, Pentium 4, and SGI R12000. The Fourier-based method is demonstrated to be 1.5-2.5
faster than the direct summation method for typical data sizes. The relative speed gain is
even higher for larger sizes. The gain is particularly large when �xing the image size and
varying the number of projections.
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Appendix A

Proof of Corollary 10

We observe that
Z 1

�1

eictx dt



By introducing wk = vk=c and �k = �tk=c we have that

�

�

�

�

�

Z 1

�1

eictx dt�
N
X

k=1

wke
ic�kx

�

�

�

�

�

< �=c:

We note that j�kj � ��=c = 1

N

so by choosing N su�ciently large, j�kj < 1.

According to Theorem 9, the error for approximating v(x) is bounded by

�

�

�

�

�

Z �

��

�(t)ei�ty dt �
N
X

k=1

vke
i�tky

�

�

�

�

�

< � �

2k�k1

 

3

�

c


N�

�2m

+
2

2 + (2 +
p

3)N + (2 �
p

3)N
+

2dm

1 � e��m
e��m(1�
)N

!

:

We conclude the proof by observing that k�k1 = 2c.
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Appendix B

Algorithms for low rank
representations of operators

B.1 Rank reduction

In order to reduce the rank of a separated representation on the form
P

i �ieif
�
i and obtain

an almost orthonormal separated representation, we need a way to "re-orthogonalize" a
given separated representation. Such an algorithm is given for operators in an arbitrary
number of dimensions in [7]. In this thesis, we present a simpler algorithm that works for
two dimensional problems. We �rst provide a heuristic description of the rank reduction
procedure and give a more detailed algorithm below.

Consider a sum of the form

L =

r
X

k=1

skekf
�
k

where we assume that the vectors ek; fk 2 � N have been normalized using the norm kvk2 =p
< v; v > where < ; > denotes the standard dot-product. For two dimensional problems,

ek and fk correspond to vectors in � N2
. In this case, the norm corresponds to the Frobenius

norm for matrices.
Let us �rst orthogonalize the left factors ek to obtain a new set of left factors ~ek which is

an orthonormal set. The scalars sk and the right factors fk are simultaneously re-computed
such that the new decomposition still equals the matrix L. Throub3 0 Td
out.7835 0077l6521.9552 Tf
s53 7.95.0649 0 Td
(decomp)T

w



for the left and the right factors. This will orthogonalize the right factors, but may change
the left factors such that they are no longer orthonormal. By iterating this process by
alternating the orthogonalization sweeps for the left and the right factors, the decomposition
will converge to the SVD. In practice, we have found that one sweep for each factor is usually
su�cient to reduce the rank



Algorithm: Rank reduction of a separated representation

1. Normalize fekgk and ffkgk and adjust fskgk accordingly. Set i = 1.

2. Pivot (put the term with the largest si �rst)

3. While i < r

fi = sifi

For j = i + 1 : r

aj =< ei; ej >

~ej = ej � ajei (This means that < ~ej; ei >= 0.)

bj = k~ejk2

fi = fi + sjajfj

end

For j = i + 1 : r

~s = sjbj

If ~s > �

~ej =
~ej

bj

sj = ~s

else

r = r � 1

end

si = kfik
If si > �

fi = fi

si

else

r = r � 1

end

end

Pivot (put the term with the largest si �rst)

i=i+1

end
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multiplication in Appendix B.2 on the left factors in the separated representation of ~Uk
l .

We can compute the product Uk
l

~Dk
2k in a similar way. Finally, we can compute the product

U i
j
~Lk

l using (5.10). After each matrix addition, it is essential to apply the rank reduction
algorithm in Appendix B.1.

The algorithm for computing lower diagonal and diagonal blocks are similar. The al-
gorithm



4. For i = m� 1 : 1 (Loop over parent levels)

If j is odd

j = d j

2
e

Ûk
l = Ûk

l + restrict(F i
j )

D
l

else

j = d j

2
e

Ûk
l = Ûk

l + restrict(Gi
j)

D
l

end

end

The operator restrict(F )D
l restricts a matrix to the portion that covers the l:th diagonal

block of a matrix represented as a level m PLR representation.
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Appendix C

The acoustic equation in two
dimensions

C.1 The derivative operator in two dimensions on a

subdivided domain

Let us look at the derivative operator @
@x


 Iy introduced in Section 6.1. Consider the case
where the domain consists of M -by-M subdomains, where each domain has its own set
of N basis functions according to Section 3.2 in each direction. Using the notation from
Section 3.2 we write functions on such subdivided domain as

u(x; y) =

M
X

k=1

M
X

l=1

N
X

m=1

N
X

n=1

smksnl�mk(x)�nl(y):

From the de�nition of @
@x


 Iy we have that

�

@

@x

 Iy

�

u(x; y) =
M
X

l=1

N
X

n=1

snl

 

M
X

k=1

N
X

m=1

smk�
0
mk(x)

!

�nl(y)

� g(x)
M
X

l=1

N
X

n=1

snl�nl(y):

If we use the construction of the derivative matrix in one dimension from Section 3.2 with
the coupling parameters a = b = 1=2, the heuristic argument in Section 3.2.5 gives that g(x)
is continuous. Hence,

�

@
@x


 Iy
�

u(x; y) is continuous across the vertical interfaces for each y.
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C.2 Construction of derivativ



Algorithm: Construction of D and D0 for using to solve the acoustic equation.

1. Construct N quadrature nodes and weights according to De�nition 11.

2. Construct the matrix S according to (2.27), the matrix K according to (4.1), and the
matrices E, F , and G de�ned in De�nition 19 by using (2.21)-(2.25). Construct the
matrix Pc and P�1

c according to (2.31).

3. Construct the derivative matrix D with arbitrary boundary conditions for single in-
tervals by using De�nition 20, and for multiple intervals by using (3.32) and Tables
3.1-3.3.

4. Construct the derivative matrix D0 with zero boundary conditions for single intervals
by using De�nition 20, and for multiple intervals by using (3.32) and Tables 3.1-3.3.

5. Construct

L =

�

0 D0

D 0

�

:

6. Project  



Appendix D

Inverse problems

D.1 Proof of Proposition 26

We �rst observe that since A is diagonalizable, there exists an invertible matrix S such that
A = Sdiag(�k)S

�1 where the columns of S are right eigenvectors ek of A and the columns
of (S�1)T are the left eigenvectors fk. By scaling the eigenvectors such that fk

Tek = 1, we
have that

fk
Tel = �kl: (D.1)

(1) This follows from the de�nition of Pk and the scaling fk
Tek = 1.

(2) By using (D.1) we have that

PkPl = ekfk
Telfl

T = ek(�kl)fl
T = �klPk:

(3) Since A is diagonalizable, the eigenvectors form a complete basis and, hence, if x is
an arbitrary vector then

x =
X

k

xkek

for some set of coe�cients xk. Using (D.1) it follows that

X

l

Plx =
X

l

Pl

 

X

k

xkek

!

=
X

l

 

X

k

xkelfl
Tek

!

=
X

l

xlPlel =
X

l

xlel = x

and, since x is arbitrary, I =
P

k Pk.
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(4) Let x be an arbitrary vector. Then

Ax = A
X

k

xkek =
X

k

xkAek =
X

k

�kxkek =
X

k

�kPkx

and, since x is arbitrary, A =
P

k �kPk.
(5) Using (D.1) and that the eigenvectors form a complete basis, we have that

Pkx = Pk

X

l

xlel = xkek:

D.2 The inverse problem for acoustics in the time do-

main

The equation de�ning the inverse problem for acoustics (7.1), is related to the time domain
as follows. Consider the case when the density of the acoustic equation (6.1) is constant
throughoutConsider domain comressibilsit

t

the
comressibilsit relatej
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(througho0.0273 0 Td
(in)Tj
ic)Tj
45.914740 Td
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(that)Tp36 11.9552 Tf26.3904 0 89d
(v)Tj
5sTj
s�e9.5096d
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sA)Tj
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Abstract. We have implemented a Fast Fourier Summation algorithm for tomographic
reconstruction of three-dimensional biological data sets obtained via transmission electron
microscopy. We designed the fast algorithm to reproduce results obtained by the stan-
dard �ltered backprojection. For two-dimensional images, the new algorithm scales as data



E.1 Introduction

In this paper we describe a Fast Fourier Summation algorithm for tomographic reconstruc-
tion of data obtained with transmission electron microscope. For two-dimensional recon-
structions, the algorithm scales as O(N�M logM) + O(MN logN) operations, where N� is
the number of projection angles and M � N is the size of the reconstructed image. This
should be compared to computing the standard �ltered backprojection using direct summa-
tion in the space domain which scales as O(N�MN). Our algorithm has been applied to data
of typical sizes and is shown to be 1.5-2.5 times faster than direct summation. For larger
data sets, the time gain is even higher.

The method of �ltered backprojection for tomographic reconstruction sums �ltered pro-
jection data in the space domain (direct summation). We designed the algorithm to repro-
duce the results of the direct summation algorithm within the required accuracy. We show
that without any additional cost, we obtain an algorithm which uses higher order spline
interpolation of the data whereas the direct summation uses only linear interpolation.

Reconstruction algorithms for electron microscopy imaging of biological specimens have
been described by DeRosier and Klug [19] via a Fourier based method, and by Gilbert [28]
via direct summation. For a review, see Frank [22].

The problem of reconstructing an object by measuring projections has a rich history and
many applications. For example, the x-ray tomography, radio astronomy, as well as seismic
processing are using results of the basic inversion technique �rst considered by Radon [45].
The Radon inversion formula was rediscovered by Cormack [17] for x-ray tomography, and by
Bracewell [12] for radio astronomy. For an introductory overview of the subject, see Deans
[18].

The well-known Fourier slice theorem relates projection data to the Fourier transform
of the image. The collected projection data corresponds to samples on a polar grid in
Fourier space where the polar angles are not necessarily equally spaced. The standard two-
dimensional Fast Fourier Transform (FFT) requires sampling on an equally spaced rectangu-
lar grid and, hence, fast Fourier reconstruction methods require some interpolation scheme
in Fourier space. Such methods have been proposed by e.g. Lanzavecchia and Bellon [41].
We propose a technique that uses the one-dimensional unequally spaced fast Fourier trans-
form for performing summation in the Fourier domain as opposed to summation directly in
the space domain as in the direct summation algorithm. The method we propose guarantees
accuracy while controlling the computational cost. We also gain 
exibility for choosing inter-
polation schemes and incorporating �lters which are applied in the Fourier domain without
additional computational cost.

We introduce and formulate the inversion problem in Section E.2. We then give a brief
review of the direct summation algorithm, where the summation over the projection angles
is performed in the space domain. In Section E.3 we derive an inversion formula which
e�ectively sums over the angles in the Fourier domain. We discretize the inversion formula in
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Section E.4
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by I�(t) = I0e
�Rθ(t), where I0 is the incident intensity. We assume that I0 is a constant, and

set I0 = 1.
Our goal is to approximate g(x; z) by measuring I�(t). On taking R�(t) = � ln I�(t),

our measurements provide us with R�l
(tk), where �l and tk are discretizations of � and t

respectively. Sampling R�(t), typically at equal angles and distances, yields the matrix,

rkl = R�l
(tk); (E.3)

where k = 0; 1; : : : ;M � 1 and l = 1; 2; : : : ; N�. Each column l of the matrix contains all
measurements for the angle �l.

The problem can now be formulated as given the measurement data rkl, �nd an approx-
imation to g(xm; zn), where xm; zn is some grid, m = 1; 2; : : : ;M and n = 1; 2; : : : ; N . The
total amount of data is signi�cant since it consists of measurements from a large number
of two dimensional slices of a specimen (typically as many as points in the x-direction).
Therefore, we want to not only �nd an accurate approximation of the density distribution,
but also to compute it in an e�cient manner.

E.2.2 Inversion of the Radon transform

As is well known, (see e.g. Deans [18]), the two-dimensional density g(x; z) can be recovered
from the line integrals R�(t) in (E.2) via the integral

g(x; z) =

Z �

0

(� �R�)(t(x; z)) d�; (E.4)

where � is a convolution operator. For each angle � the projection coordinate t depends on
(x; z) according to (E.1) but we will omit the angle dependence in our notation for t. In the
Fourier domain the convolution operator is represented by

�̂(!) = j!j: (E.5)

In practice, this �lter is often modi�ed by a bandlimiting window.

E.2.3 Filtered backprojection using direct summation

If we assume that the electron beam is modelled by line integrals over in�nitesimally thin
straight lines then reconstructing the density of a specimen from its projections can be viewed
as the inversion of the Radon transform. Many reconstruction algorithms rely on this fact
and solve the inversion problem analytically by discretizing the inverse Radon transform [18],
[28]. In this section we describe the widely used direct summation algorithm (also known as
R-weighted backprojection).
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We discretize (E.4) by the sum

g(xm; zn) =

Nθ
X

l=1

wl [� �R�l
](t(xm; zn)) (E.6)

where wl are weights and t(xm; zn) are given by (E.1). For measurements performed over
equally spaced angles, the weights wl are usually set to one. Since we have measurements
only for a discrete set t(xm; zn), the values R�l

(t(xm; zn)) are estimated by some interp



Consider the sum used for �ltered backprojection (E.6),

g



where xs is a shift parameter which depends on the selection of the coordinate system in x.
It is easily veri�ed that the function R�l

(t) is continuous with respect to t. Using (E.13) we
have

R̂�l
(!) =

M�1
X

k=0

rkl

Z 1

�1
�(t� k + xs)e

2�it!dt

=

M�1
X

k=0

rkle
2�i(k�xs)!

Z 1

�1
�(s)e2�is!ds

= e�2�ixs!�̂(!)
M�1
X

k=0

rkle
2�ik!:

(E.14)

Combining (E.11) and (E.14) yields

vl(!) =
wl

cos �l

e
�2�ixs

ω
cos θl �̂(

!

cos �l

)�̂(
!

cos �l

)
M�1
X

k=0

rkle
2�ik ω

cos θl

= Fl(!)r̂l(
!

cos �l

);

(E.15)

where

Fl(!) =
wl

cos �l

e
�2�ixs

ω
cos θl �̂(

!

cos �l

)�̂(
!

cos �l

); (E.16)

and

r̂l(
!

cos �l

) =

M�1
X

k=0

rkle
2�ik ω

cos θl : (E.17)

Note that the factor Fl(!) is independent of the data once the angles �l are known.
The �nal step is computing gn(x) from ĝn(!). By taking the inverse Fourier transform

of (E.8) we arrive at

gn(x) =

Z 1

�1

 

Nθ
X

l=1

vl(!)e�2�i�l(!)zn

!

e�2�i!x d!; (E.18)

where �l(!) = ! tan �l and vl(!) are de�ned in (E.15). We also observe

gn(x) =

Z 1

�1

 

Nθ
X

l=1

vl(!)e�2�i�l(!)zn

!

e�2�i!x d!

=
X

j2 �

 

Z 1
2

� 1
2

 

Nθ
X

l=1

vl(! + j)e�2�i�l(!+j)zn

!

e�2�i(!+j)x d!

!

;

(E.19)
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where we recall

vl(! + j) =
wle

�2�ixs
ω

cos θl �̂( !+j

cos �l
)�̂( !+j

cos �l
)r̂l(

!+j

cos �l
)

cos �l

:

Let us consider a bandlimited �lter � such that the support of �̂ is contained in [� 1
2
; 1

2
]. As

an important example consider

�̂(!) =

8

<

:

j!j; j!j � 1
2

0; j!j > 1
2

:

For this example we observe that vl(! + j) = 0 for all j 6= 0. Hence (E.19) reduces to

gn(x) =

Z 1
2

� 1
2

 

Nθ
X

l=1

vl(!)e�2�i�l(!)zn

!

e�2�i!x d!: (E.20)

Remark. Note that equation (E.20) is equivalent to the sum (E.6) used in the direct
summation algorithm, where � is a bandlimiting �lter.

�

E.4 Implementation

E.4.1 Discretization

Let us evaluate (E.20) at pixel locations in our �nal image given by

xm = �xs +m; m



we approximate (E.20) by

gn(xm) ’ 1

Mf

Mf

2
X

k=� Mf

2
+1

 

Nθ
X

l=1

vl(
k

Mf

)e
�2�i�l(

k
Mf

)zn

!

e
�2�i k

Mf
xm

=
1

Mf

Mf

2
X

k=� M



Since our algorithm uses the sum (E.22), we need a fast algorithm to compute the sums

ûn =

M
X

k=1

uke
�2�i�kn; n =



where �max = maxfj�ljgNθ

l=1. This is illustrated in Figure E.2, where there is no wraparound
between the left and right sides of the reconstruction.

If Mf is smaller than the spatial support Mext = M + 2�M , we will observe aliasing,
namely, the left and right part of the image will overlap. As long as the overlapping region
is outside the region of interest, no harm is done to the reconstruction. Hence, in order to
avoid aliasing artifacts, we must choose

Mf � M +N tan �max: (E.26)

This is illustrated in Figure E.3, where the wraparound does not overlap the region of
interest. Choosing Mf larger than M can be thought of as oversampling the image. The

200 400 600 800 1000 1200 1400

20
40
60
80

100
120
140

Figure E.2: For this reconstruction M = 572, N = 140, and �max = 73:31o. This gives31 M



E.4.4 Numerical algorithm

Our �rst goal in designing a Fast Fourier Summation algorithm is to match the direct sum-
mation algorithm. We do it for two reasons. First, since the direct summation algorithm
has been used for a long time in this �eld, we avoid the issue of acceptance. Second, we
demonstrate the 
exibility of the Fast Fourier Summation algorithm. As it turns out by
changing parameters we can achieve higher order interpolation in the input data in compar-
ison with the linear interpolation used within the direct summation. The results obtained in
this manner appear to be less "noisy", but we leave the practical utility of such interpolation
outside the scope of this paper.

In order to match the direct summation algorithm we consider linear interpolation and use
a bandlimited version of the �lter de�ned in (E.5). We use the discretization in both x and
frequency, described in Section E.4.1. We consider a discretization of z into N equally spaced
points and denote them zn. The discretization of the radial weighting and interpolation �lters
is as follows

�̂(!k) =

8

<

:

j!kj ; !k � 1=2

0; !k > 1=2

�̂(!k) =

�

sin(�!k)

�!k

�2

:

We discuss other choices of �lters in Section 2.6.3 below.
Next we summarize the main steps of the Fast Fourier Summation algorithm. Let us con-

sider a case when given M projection points at N� angles, we wish to reconstruct a sequence
of Ni images at M � N grid points. In what follows Mf satisfying (E.26) is the number of
spatial frequency modes in the x direction.

Algorithm.

1. Precomputation: For each angle �l and each frequency !k, compute Fl(!k) de�ned by
(E.16).

2. For each image, evaluate (E.21):

(a) For each angle �l and each frequency !k, compute the sum (E.17) using the
USFFT and multiply the result by Fl(!k) to obtain vl(!k) in (E.15). See the
Appendix for details of organizing computation of the USFFT. Computational
cost: O(N�Mf ) +O(N�M logM).

(b) For each frequency !k, compute the sum in (E.22) using the USFFT. See the
Appendix for details. Computational cost: O(MfN�) +O(MfN logN).
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(c) Compute the sum in (E.21) using the FFT. Computational cost: O(NMf logMf )

The steps are illustrated in Figure E.4.
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A Fast Fourier Summation algorithm is important when reconstructing a large number
of two-dimensional slices. In most applications, the angles �l and �lters are the same for all
slices, which means that the precomputation step in the algorithm above only needs to be
done once while steps 2a-c are repeated for each slice.

We remind that Mf = cM where c is an oversampling factor given by (E.26). In most
applications, the tilt angles � are bounded, and projections at high tilt angles requires thin
specimens, that is a small value of N . Hence, the oversampling factor is bounded in most
applications and we have found that typically Mf � 2M . Therefore, the total computational
cost of the full three-dimensional reconstruction algorithm is given by O(NiN�M logM) +
O(NiN�Mf logMf). This should be compared to the cost O(NiMNN�) for the traditional
method of direct summation. Actual speed comparisons are given in Section E.5.2.

Remark. The sum
PM�1

k=0 rkle
2�ik ω

cos θl computed in Step 2 of the algorithm is similar
to the sums that can be computed with the FFT. For each �xed angle �l, the
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Figure E.5: Side view of section to be reconstructed where the section is tilted by the angle
� around the x-axis. Dashed lines are slices computed by the algorithm and the solid line is
the output slice interpolated from vertical slices.

E.5.2 Tests

Accuracy

The data set shown here is based on images from the mitotic spindle of a dividing cell from
the PtK cell line. The cell was high-pressure frozen, freeze-substituted, embedded in epon-
araldite, and sectioned at 300 nm. The section was tilted between �70 at 1.5 degree intervals
and images were recorded on �lm in a JEOL microscope operating at 1,000 KeV. The grid was
then rotated by 90 degrees in the specimen holder and a second, similar tilt series was taken.
Data were digitized at a pixel size of 2.3 nm using a CCD camera. The resolution of both
the �lm and the CCD camera were good enough to ensure that the images have substantial
information out to the Nyquist frequency. The overall Modular Transfer Function (MTF) is
estimated to be 30% at Nyquist. The single axis and combined tomograms were computed
as described previously (see Mastronarde [42]).

Figure E.6 shows that the FFS algorithm produces essentially the same reconstruction
as direct summation. One slice from the reconstruction of the test data set computed
with FFS appears in Figure E.6a. The two densest features, one above and one below
the sectioned material, are colloidal gold particles placed on the surface of the support �lm
as �ducial markers for alignment. The di�eren0.26737etweensizeof 2.3 thethet.j
9i.271.8or70



Figure E.6: (a): A test data set computed with the Fast Fourier Summation algorithm.
(b): The di�erence between the image in (a) and the corresponding slice reconstructed by
direct summation with the same contrast as in (a). (c): The same dataset as in (b), but
with the contrast ampli�ed 29 times. (d): Test data set for the Fourier ring correlation test.
(e): Portion of reconstruction of the data set in (d) without noise added. (f): Portion of
reconstruction of the data set in (d) with noise added.
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the background. The di�erences within the section are smaller and are less than 2% of the
range of densities found there.

For a quantitative assessment of the �delity of reconstruction by the two methods, a
sample volume was reprojected, then tomograms were built from the re-projections and
compared with the original volume by Fourier ring correlation (see Saxton and Baumeister
[49]). The combined dual-axis tomogram of our test data set was used as the sample volume;
Fig. E.6d shows the corresponding slice from this volume. This volume was considered
suitable because the characteristic artifacts from single axis tomography, namely the dark
rays at the terminal angles of the tilt series and white shadows to the sides of densities, are
much reduced there [42]. The



Figure E.7: The graph shows the correlation between the Fourier transforms of the recon-
struction and those of the test volume, as a function of spatial frequency, averaged over 190
slices of each reconstruction.
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Figure E.8: (Direct summation)/(Fast Fourier Summation) execution time ratio for three
computer architectures. (a): Dependence on number of projections with width 1024 and
thickness 200. (b): Dependence on reconstruction width with 80 projections and thickness
200. (c): Dependence on thickness with 80 projections and width 1024.
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dependence on one of the size dimensions with the other two held at typical values. The
strongest dependence is on the number of projections (Fig. E.8a), where the speed bene�t
climbs 5-fold with an increase from 20 to 320 projections. For the other dimensions, the
bene�t from Fast Fourier Summation tends to rise with initial increases then 
atten out.
This initial rise was most abrupt and pronounced with Athlon processors (e.g., Fig. E.8c)
and it re
ects predominantly a slowing down of the direct summation per unit of computation
rather than a speedup of Fast Fourier Summation. Our interpretation is that the architecture
of the Athlons is particularly favorable to the direct summation for small data sizes, but at
some point a limit in cache or pipeline size is reached and the performance falls abruptly for
direct summation.

Overall, the typical bene�t from Fast Fourier Summation is about 1.5 - 2.5 fold, with
greater bene�ts available on some computers and with larger data sets. The Fast Fourier
Summation is actually slower than direct summation for small data sets (Fig. E.8a,b).
To avoid using a slower algorithm, the Tilt program switches to direct summation when the
width, thickness, or number projections falls below a speci�ed limit for the given computer

architecture.
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