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Chapter 1

Introduction

This thesis covers two main topics: numerical algorithms for wave propagation and a fast
tomographic reconstruction algorithm for transmission electron microscopy. The main con-
tributions of this thesis are:

using bases for bandlimited functions as a numerical tool in algorithms of wave prop-
agation,

developing and using e cient representations of operators in two dimensions for pur-
poses of wave propagation,

and

constructing a fast algorithm for tomographic reconstruction of thick biological speci-
mens for the transmission electron microscopy.

Using bases for bandlimited functions allows us to achieve a low oversampling rate while
signi cantly reducing numerical dispersion. By using the operator representations introduced
in this thesis for wave propagation, application of the matrix exponential for large time steps
becomes feasible as a numerical propagation scheme.

1.1 Wave propagation

There are numerous applications of wave propagation in acoustics, elasticity and electro
magnetics, including medical imaging, sonar, seismology, radar, and noise m094 0 T-n,



We develop fast and accurate numerical algorithms to solve (as an example) the equation
of acoustics

(uie = ( (Jux)x (11)

with spatially varying material parameters (x) and (x). The coe cients (x) and (x)
represent the compressibility and the speci ¢ volume of the medium, respectively. The goal
is to construct schemes where we control the bandwidth and accuracy. Our approach is
based on the following ideas:

We choose a basis that works well for problems with variable medium parameters,
non-periodic boundary conditions, and material interfaces.

By constructing derivative operators with nearly uniform error distribution for fre-
guencies within a given bandwidth we reduce numerical dispersion.

We use integration by parts to incorporateanc49552 Tf 11.6.1197 0 Td (medr()Tj 4et



In this thesis, we consider bandlimited functions restricted to an interval (see Section 2.5
for a precise de nition). There are several bases available for computations using bandlimited
functions (see Xiao et al. [56], and Beylkin and Monzon [9]). In this thesis we review the
construction of three bases based on functions of the type fe® **gR_, where j j < 1. Since we
do not impose that =k , these functions are not necessarily periodic. The basis spanned
by fe® »*glL, is usually not suitable for numerical computations since these functions are
in general not orthogonal. Instead, we form linear combinations of these basis functions to
construct approximations to the prolate spheroidal wave functions which were introduced as
a basis for bandlimited functions by Slepian et al. in a series of papers [54], [38], [39], [51],
and [52]. The resulting basis can be shown to be almost orthonormal and,



If there is no time-dependent force, the solution can be computed by a sequence of matrix-
vector multiplications,

u(ty) =e tu(te 1); (1.2)

where the time step t can be chosen arbitrary large without causing instabilities.

The computation of e = and the matrix-vector multiplications in (1.2) are computa-
tionally costly in dimensions two and higher and, therefore, this approach is rarely used for
numerical computations. We use the separated representation introduced by Beylkin and
Mohlenkamp [7] to represent the operator L for problems in two or higher dimensions. This
representation signi cantly reduces the computational cost for computing the matrix expo-
nential and matrix-vector multiplications. The separated representation of an operator in
two or higher dimensions is given by a sum of operators in one dimension. We refer to the
number of terms in the separated representation as the separation rank. The separation rank
for the matrix exponential e ™ grows with the size of the time step t, and we will see that
a time step between 1-2 temporal periods is appropriate to control both the separation rank
and the number of time steps. We reduce the computational cost further by representing
the operators in one dimension by introducing the so-called Partitioned Low Rank (PLR)
representation which is similar to the partitioned singular value decomposition considered by
Jones et al. [34], and by Beylkin et al. [10]. We note that both the separated representation
and the PLR representation are interesting on their own, with applications in other areas,
e.g., computational quantum mechanics (see Beylkin and Mohlenkamp [7] and [8]).

1.1.4 Wave propagation on space-like surfaces

As an application of the tools for wave propagation, we consider wave propagation on space-
like surfaces. This problem appears in some approaches for solving the inverse problem where
sound waves are propagated through a domain with an unknown scatterer. By measuring the
scattered wave eld at a surface outside the scatterer, the goal is to determine the structure
of the scatterer. In particular, we consider ultrasound tomography and an approach by
Natterer and Wubbeling [44] which involves repeated solution of equations on the form

Uy = U Y)IPA+Fu  Au; 6y)2[ 1,1 [ 11

u(x; 1) =g(x)

uy(x; 1) =h(x) : (1.3)
uC 1y) =r(y)

u(L;y) =s(y)

This equation is an initial value problem for the Helmholtz equation and we refer to it as wave
propagation on space-like surfaces. As posed in (1.3), this equation is unstable. In many
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applications, for example underwater acoustics, seismics, and Synthetic Aperture Radar
(SAR), this problem is stabilized by replacing the operator in (1.3) by one-way operators.
Such approach excludes waves going in the opposite direction, e.g. multiple re ections. An
alternative approach has been proposed in [44], where this problem is solved for constant
coe cient by using Fourier-techniques to Iter out the high frequencies of the solution.
In this paper, we consider the case of x-dependent coe cient . We show that by forcing
the spatial operator A to be negative de nite, we obtain an equation which can be solved
in a stable manner by computing the matrix exponential. In order to obtain a negative
de nite operator, we review the work by Beylkin et al. [10] who present fast algorithms
for computing spectral projectors for self-adjoint operators. We extend this algorithm to
diagonalizable matrices with pure real or imaginary spectrum and apply the technique to
solve (1.3) for constant and x-dependent coe cients.

1.2 Biological imaging

There is a signi cant interest in studying the ne structure of cells and tissues. By using high
voltage Transmission Electron Microscopy, biologists reconstruct three-dimensional images
of cell structures. A large amount of information is collected in the form of three-dimensional
images, and an important task is to use this information to build three-dimensional models
of cell structures. Image analysis is an important tool for gaining a deeper understanding of
biological structures of cells and tissues (Ladinsky et al. [37]).

The modeling process includes specimen preparation followed by imaging of the specimen
using electron microscopy. The three-dimensional density of the specimen is computed by
tomographic reconstruction. The resulting data set is segmented (boundaries of certain
objects are labeled) and rendered into surfaces that can be visualized in three dimensions
(Kremer et al. [36]). The modeling process is time consuming and it is desirable to make
some of the steps automatic. This requires careful understanding of the decisions that are
currently being made by biologists.

The reconstruction process and the image segmentation stages involve a number of chal-
lenging mathematical problems. Tomographic reconstruction is of great importance in many

elds, including seismic imaging, Magnetic Resonance Imaging (MRI), x-ray tomography,
and in electron microscopy. We consider the study of thick biological specimen using trans-
mission electron microscopy. This application involves some di culties that has to be ad-
dressed by a successful reconstruction algorithm. The range of angles that can be used for
illuminating the specimen is limited to a range of angles, typically between 70°, and the
measurement usually contain a signi cant amount of noise. Also, the specimen is signi -
cantly deformed during the experiment, which means that the angles usually are not equally
spaced.

In this thesis we develop a fast algorithm for tomographic reconstructions of transmission



electron microscopy data. The goal is to construct a fast reconstruction algorithm that
produces the same results as the direct summation technique [28] traditionally used for
electron microscopy tomography of thick specimen. The goal is to construct an algorithm
that scales as O(N2log N) compared to O(N?) for the direct summation technique.

Our approach is based on the reconstruction technique known as Itered backprojection
or direct summation (see, e.g., Deans [18] and Gilbert [28]), where the reconstruction for-
mula takes the form of a sum. Instead of summing in the space domain, we express the sum
in Fourier space where we can use the Unequally Spaced Fast Fourier Transform (USFFT)
introduced by Dutt and Rokhlin [21], and by Beylkin [4], for e cient summation. The re-
sulting algorithm has been incorporated into the software package IMOD [32],[36] developed
by The Boulder Laboratory for 3-D Electron Microscopy of Cells at University of Colorado
at Boulder.

1.3 New results

Although this thesis combines tools from a number of papers, in particular [9], [1], [7], [10],
and [4], there are some results and applications that are new:

The use of bandlimited functions for numerical solutions of partial di erential equa-
tions.

The construction of an algorithm for solving the acoustic equation in two dimensions
with variable coe cients with a signi cant reduction of numerical dispersion compared
to a fourth order nite di erence scheme. The time evolution method allows large time
steps and is signi cantly faster than using the explicit Runge-Kutta 4 solver.

The use of spectral projectors for numerical solutions of wave propagation problems
on space-like surfaces.

The construction of fast operator calculus algorithms for matrices represented in the
PLR form. The PLR form is demonstrated to be an e cient representation for many
matrices that are not compressible with wavelet-techniques and the singular value
decomposition.

The construction of spectral derivative matrices incorporating boundary and inter-
face conditions. The thesis generalizes existing methods to non-orthogonal bases and
demonstrates how the use of spectral projectors improves the conditioning of the deriva-
tive matrices.

Miscellaneous results for the approximate prolate spheroidal wave functions introduced
in [9].



The construction of a fast algorithm for tomographic reconstruction of thick biological
specimen using transmission electron microscopy. The new algorithm is shown to be
faster and to provide more exibility than the commonly used technique Itered back
projection (a.k.a. direct summation).

1.4 Speed comparisons

For the speed comparisons in this thesis, we used a Dell computer running Red Hat Linux
8.0 with a Pentium 4 2.56GHz processor and a memory of 1GB RAM with 512kB cache. The
programs were written in Fortran 77 using (non-optimized) BLAS and LAPACK routines
for linear algebra operations. We used the the g77 compiler with the compiler ags -03
-march=pentium3 -mmmx -msse -malign-double -funroll-loops.

1.5 Outline of the thesis

We begin with a review of the bandlimited functions in Chapter 2 where we also include a few
new results. In the third chapter, we construct derivative matrices incorporating boundary
and interface conditions with respect to an arbitrary set of (smooth) basis functions. We
apply the tools from Chapter 3 to bandlimited functions in Chapter 4 where we provide
several numerical examples demonstrating the acclpe®pilja24 §3I0FOrjT d1(esivpbihkd.4138 0 Td9(e)Tj 10



Chapter 2

Bandlimited functions

In this chapter we study bandlimited functions and present numerical tools for using them.
Our main motivation for using bandlimited functions for numerical analysis is that solutions
of PDEs behave more like exponentials than polynomials which comprise the main tool used
today id ¥e)Tj 9..a33s,69 0 Td2 -14.em.8Tj 65.9897 0 Ud (using)3j 25.0146 0 Td (bandlimited)6.095.0155






and
kukq = max ju(x)j:
x2[ 1;1]

Occasionally, we extend these functions to functions on R and use the norms

S
<7

Kuk2g) = ju(x)j? dx
a1

and

kuki ) = maxju(x)j

for the extended functions.

2.2 The space of bandlimited functions

In this section we introduce bandlimited functions on the real line. We review properties of
such functions and state a bound for the derivative. Following Landau and Pollak [38], the
bandlimited functions are de ned as

De nition 1 (Bandlimited functions) Let ¢ > 0 and de ne the space
B. = ff2L2(R) j f(1) =0 for j1j > cg:
We refer to B, as the space of bandlimited functions of bandwidth c.

We note that the space of bandlimited functions equipped with the standard inner product
is a closed linear subspace of L?(R) and, therefore, a Hilbert space. As an example, consider
the function

C . sincx
u(x) = —sinc(cx) = :

(2.2)

This function is square integrable on the real line and its Fourier transform is given by

_ L 12[ ¢ .
alt) = 0; 12[ cc] °

In some situations, we will use the following space which is dense in B..
De nition 2 Let ¢ > 0 and de ne the space

F. =B\ L'(R):

10



As an example, consider the function
cC . ,,CX
V(X) = —sinc*(—):
() = 5-sinc’()
This function is absolutely and square integrable on the real line. The Fourier transform is
given by

_ 1 a2 ¢ .
o) = 0; 18] cc]

Hence, v 2 F.. Note that the function u in (2.2) is not absolutely integrable, and hence u
does not belong to F..
The space B, has the following properties.

Proposition 3 The space of bandlimited functions B has the following properties:

1. Every function u2B, can be written as
z

1 ¢ -
u(x) = =—  o(1)e'"* d!
2
almost everywhere.
2. Let u2B. and de ne >0 by

kuk, 2 :
= 05D 903 T8 9F5.98953 0 Td (u)TjTj 39998 1.8 Td (
kUkLz(R)



and since u, ¥ uand @, ¥ 0 in the L?-norm, u = u almost everywhere.

(2) This follows from Bernstein’s inequality. (See, e.g., Meyer [43, Ch. 2.5] and references
therein.)

(3) This follows from the second part of the proposition. O

2.3 The Prolate Spheroidal Wave Functions

In this section we review the prolate spheroidal wave functions and consider some of their

properties. These functions have been studied by, e.g., Flammer [24] and Slepian et al.

[54],[38]. Properties of the functions are reviewed by Slepian [53]. Numerical tools for these

functions are given by Bouwkamp [11], Xiao et al. [56], and by Beylkin and Monzon [9].
The prolate spheroidal wave functions are de ned as

De nition 4 (Prolate spheroidal wave functions) Consider the bandwidth
¢ > 0 and de ne the operator F.: L?([ 1;1]) ¥ L?([ 1;1]) by
Z 1
Fo( )(1) = e (x) dx; (2.3)

1
and the operator Q. : L2([ 1;1D] ¥ L?([ 1;1])] by

Z, .
Q=1 M D 6 4= L,

1

The eigenfunctions of Q. and F. are called prolate spheroidal wave functions .

Each eigenvalue of F, corresponds to an eigenvalue of Q. by

G i
= : 2.4
> (2.4)
The prolate spheroidal wave functions depend on the bandwidth ¢ for which they are con-
structed, but we will suppress this dependence in our notation.
Let us state some properties of the prolate spheroidal wave functions.

Theorem 5 The prolate spheroidal wave functions are complete in L?([ 1;1]) and B..

For a proof, see [54]. The eigenfunctions ;(x) are real and orthogonal on both [ 1;1] and
R,
VA 1
i(X) j0Qdx = jj; (2.5)

1
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and
Z 1

i(X) j(dx =

1
1 i

= (2.6)
where ; is the eigenvalue of the operator Q.. This normalization is more convenient for our
purposes, although in the original paper by Slepian and Pollak [54], the prolate spheroidal
wave functions are normalized on R instead. The prolate spheroidal wave functions are

uniformly bounded on [ 1;1]. More precisely, there exists a bandwidth dependent constant
K. such that

k ki Ko 2.7)

forall j =0;1;::: . Asdiscussed in [9], the existence of Kc a



2.4 Bandlimited functions on an interval

In many applications we are interested in bandlimited functions restricted to a nite interval.
We study a representation of such functions using exponentials in this section and show how
such representations provide local approximations of bandlimited functions in B.. Following
[9] we de ne

De nition 7 (Bandlimited functions on an interval) De ne the space E. of bandlim-
ited functions of bandwidth ¢ on an interval as

C ).

x<
Ec= u2LY( L1Djux) = ae®™: fage2l*; be2[ cc]
k2Z

We characterize the space E. in the following theorem.

Theorem 8 The space E. of bandlimited functions on an interval satis es the following
properties:

1L E CH([ L1)

2. For every > 0 and u 2 F, there exists a function u 2 E; such that ju(x) &(X)j <
almost everywhere on [ 1;1].

3. For every >0 and u2E. there exists a function &2 B such that ku uk, < .
4. For every >0 and u2B, there exists a function u2E. such that ku tk, < .

In the proof of (2) below, we discretize an integral using the Riemann sum. This is usually
not an e cient way for computing an integral, but we use it for the simplicity of the proof.

Proof. (1) Let u2E.. Then the sequence fhcg is bounded, and it is easily shown that
the family of functions fe'®¥g, is equicontinuous on [ 1;1]. Since fa.g.21* it follows that

u(x) = age'™
k27

is continuous on [ 1;1] and hence E. C([ 1;1]). By the de nition of E. we have that the
n:th derivative of u is given by

> .
uM(x) = (ib)"ake™:
k22

Since fagi 21* and j(ib)"j  c" it follows that F(ib)"a.gx 2 I* and hence u™(x) 2 E. for
each n =0;1;::: . Since every function in E. is continuous, it follows that E. C1([ 1;1)).

14



(2) By Proposition 3 it follows that any function u2 F, can be written on the form
Z C
u(x) = (De'** d!

C

almost everywhere and since u2 LY(R), is con



By using (2.8) it follows that u(x) = t(x) for all x2[ 1;1]. Since t2L2([ 1;1]) and f jg;
forms a complete basis in this space according to Theorem 5, we can choose N su ciently

large so that ku dnk, < . Furthermore, ;2B for j =0;1;:::;N and hence uy 2Be.
(4) Let u2B.. Then, since F. is dense in B, there exists a function v2 F. such that
ku vk, < =2 (2.9)

From the second part of the theorem we know that there exists &2 E. such that jv(x) t(x)j <
;P> almost everywhere on [ 1;1]. Then

Zl ZlZ

kv wki=  jv(x) u(x)j?dx 5 dx < 2=4
1 1

which combined with (2.9) gives us that

ku dwky, ku vk,+kv dk,< :

2.5 Approximation of bandlimited functions on an in-
terval

The goal of this section is to show that any bandlimited function on an interval of bandlimit
c can be approximated by a linear combination of a nite number of exponentials in the form
el »* where j j 1. The phases  are chosen as nodes for quadratures for bandlimited
functions. We establish the existence of such quadratures for bandlimited functions in the
following theorem.

Theorem 9 Let be a real, non-negative, integrable weight function supported in [ ; ],
0 1=2,and let f1 0 0 1 84.4774 562.68 Tm (2)Tj /R36 11.9552 Ts3 0 0 1 84.4774 562.68dgd857 0 Td (b)’



For a proof, see [9, Theorem 6.1].

The constants |, and d,, in the error estimate, are related to properties of the exponential
Euler splines, see [9, Theorem 6.1] and [50, pp. 29,30, and 35]. This theorem establishes the
existence of a quadrature and provides an error estimate. Actual computations, however, are
based on a slightly di erent algorithm where a large number of the weights are su ciently
close to zero to be disregarded (see [9] for more details). Therefore, the number of nodes and
weights actually used is typically signi cantly less than the number of nodes and weights
required by the error estimate.

The theorem above is more general than our needs. We next state a special case of this
theorem which will be the foundation for our applications.

Corollary 10 Let ¢ and be positive numbers. Then, for N su ciently large, there exist
constants fwy;:::;wygand T 4;:::; ng, such that for any x2[ 1;1]

Zy N
e|c:tx dt Wkelc EX
1 k=1



to the prolate spheroidal wave functions using the functions e'® **, and this construction
depends on the invertibility of the matrix E. Although we do not have a proof that our
construction guarantees that det(E) & 0, we have not encountered any counterexamples in
our experiments.

For the construction of the quadrature nodes in [9], we have the symmetry properties

k= N k+l (2.11)

and
Wik = WN K+l (2.12)

We use the quadrature nodes and weights to construct a basis for E. according to the following
theorem.

Theorem 12 Consider the bandwidth ¢ and a function u2E, represented by

>x<
u(x) = age'™x:
k27

Let >0, and let f g\, and fwgll, be a set of quadrature nodes and weights for bandwidth
2c and accuracy 2. Then there exist constants fu,gly; and A such that
1

> < ><
u(x) ue'e A jax]
1=1 1 k2Z

and

u(x)



P
bounded. The sequence faxgx 2 1* by assumption and, therefore, uy = |, ak w is well-

de ned for | =1;:::;N. It follows that
1

U(X) ulelc X — ake'bkx ay klelc X
I=1 1 k2Z k2Z I=1 1
' '
< . <
— ax elka klelc X A jax
k27 I=1 1 k2Z
For the L2([ 1;1])-norm we have that
_ 2 7, » 2
u(x) ue' ™ = u(x) ue' > dx
=1 2 1 =1
Z4 »x 2
u(x) ue'© ™ dx
1 1=1 1
]
>x< 7
2A? jag 2
k2Z
and hence
1
X p. X
u(x) ue'c X 2A jakj

=1 2 k2Z

g

The error estimate in the previous theorem depends on the sum szzjakj which is the
upper bound for both the function on [ 1;1] and on R. Nevertheless, numerical experi-
ments indicate strongly that this representation gives su cient accuracy which we illustrate
in Section 2.7.

2.6 Bases for bandlimited functions on an interval

In the previous section we represented bandlimited functions on an interval using exponential
functions. We also discussed how we can construct quadratures for bandlimited functions on
an interval, and use the resulting nodes and weights to construct a nite dimensional subspace

19



that approximates the space of bandlimited functions on an interval within a nite but
arbitrary precision. Even though the



2.6.2 Approximate prolate spheroidal wave functions

In the last section we pointed out that a disadvantage of the exponential



the initial approximate prolate spheroidal wave functions approximates well the correspond-



De ne ¢’ as the vector with elements given by o, = pW—m iCm



Hence, if N is even, we have that rank(A,) N=2 and by the same argument rank(A;)
N=2.
Assume that there exists an eigenvector g such that 2N (A;) \ N (Aj). Then = =
= 0 which contradicts that & 0. Hence, if q2N (A,), then g2 R(A;). Therefore,

N(A) R(A): (2.15)

Assume that rank(A;) < N=2. Then dim(N(A;)) N=2 + 1 which by (2.15) implies
that rank(A;) N=2+ 1 which is a contradiction. Hence, rank(A,) = N=2 and by the same
argument it follows that rank(A;) = N=2. Since dim(N (A;)) = rank(A;) = N=2 it follows
from (2.15) that N (A;) = R(A;). (The case for odd N is analogous).

(6) Recall that the quadrature weights are real and even in the sense that Wy, = WN  m-+1,
and that the quadrature nodes are real and odd such that ,, = N m+1. Using the
symmetry of the nodes ., it follows that

An ment = P e v P = Py o0 Py = A (2.16)
Therefore, since ¢ is an eigenvector of A with eigenvalue |,
. 1 X , 1 X
PN met = — AN men@ == And) (2.17)
J =1 J =1

Since A = A by the rst part of the theorem and g can be chosen to be real by the second
part of the theorem, it follows that g’ is an eigenvector to A with eigenvalue —j. Since the
eigenvalues j are either pure real or pure imaginary by property (5), equation (2.17) implies
that

qjN m-+1 = _J:qjm = qjm:
j
We now have that
1 j _ 1 P _
(N me) = p—xst'y M1 = P—=Tm = (m): (2.18)
WN m-+1 Wm

Corollary 16 The eigenfunctions ;(x) de ned in De nition 14 are even or odd.
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Table 2.1: Condition number for S using =10 ’

\ Bandwidth c \ Number of nodes N \ Condition number \

4 21 1:48
8 31 2:11
12 40 2:06
16 49 2:34
20 57 2:89

We now establish that the approximate prolate spheroidal wave functions can be used as
a basis for the space of bandlimited functions E.. de ned in De nition 13. By de ning the
matrix B = HQ™W we see that from (2.25) we have that

j(X) = B,—.eic X
I=1
From Proposition 15 it follows that Q is orthogonal, and therefore

h ¢ pW|
det(B) = det(H) det(W) = ——:
|

1=1

Since | and w, are non-zero, it follows that B is invertible (although it may be ill-conditioned),
and therefore the set of approximate prolate spheroidal wave functions spans the space E.
de ned in De nition 13.

2.6.3 Interpolating functions

In many applications, it is convenient to work with function values of a function rather
than with expansion coe cients with respect to a set of basis functions. This motivates the
introduction of the interpolating basis. When a function is expanded into this basis, the
expansion coe cients are the function values at some set of nodes, in our case quadrature
nodes for bandlimited functions. Such bases are also useful in some multiwavelet applica-
tions when solving non-linear PDEs, see [1]. We de ne the interpolating basis functions for
bandlimited functions on an interval as follows.

De nition 18 (Basis of interpolating functions) De ne the matrices Q, W, and H ac-
cording to (2.21)-(2.23), and the matrix R = WQHQTW. The sequence of functions

> .
rk(x) = Rk|e'° X (228)

=1
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Figure 2.4: Transformation matrices between three di erent bases for bandlimited functions
on an interval. The matrices H, Q, and W are de ned in (2.21)-(2.23). Note that the
matrices H and W are diagonal.

Table 2.2: Condition number for transformation matrices for the bandwidth ¢ = 8:5 . The
accuracy =10 7 requires 32 nodes and the accuracy = 10 * requires 41 nodes.

| Transformation matrix | =10 " [ =10 ™ |
P 2.7 3.5
B. 1:1 108 |25 10"
R, 1:2 108 (31 10"

Table 2.3: Condition number for transformation matrices for the bandwidth ¢ = 17 . The
accuracy =10 7 requires 51 nodes and the accuracy = 10 * requires 62 nodes.

| Transformation matrix | =10 " [ =10 |
P. 2.8 3.8
B. 1:2 10% | 3:4 10%
R. 1:3 10% | 40 10%4
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and

X
f(x) ” k k(X) (2.33)

k=1

where (X) is de ned in (2.14). Although both function approximations can be shown to be
identical, numerical ill-conditioning makes the rst expansion considerable less accurate as
we will observe in the experiments. A heuristic explanation for this is given in Section 2.7.1.

2.7.1 Approximations of trigonometric functions by bandlimited
functions on an interval

For the rst example, we construct 32 quadrature nodes and weights for the four band-
widths, c =55 ,7 , 85 , and 10:5 . In order to obtain these bandwidths using 32 nodes,
we set the accuracy to 10 3, 10 ° 10 7, and 10 4, respectively. We approximate the
function e for jbj ¢ by using the expansion (2.32) in Figure 2.5, and using the expansion
(2.33) in Figure 2.6. Note how the approximation in the rst case (Figure 2.5) is better for
higher bandwidths than for lower bandwidths. In the second case (Figure 2.6) where we use

Error, |0gl10
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where
(Pe D = (Q"W)ii:

This transformation matrix does not contain the greatly varying factor X that caused prob-
J

lems when computing expansion coe cients with respect to exponentials. However, this

factor does appear in the expansion of (X) as a linear combination of exponentials, namely

> :
k)= (HQTW)yne'® " (2.36)

n=1
Since

1 _
(H QTW)kn = _ankan

we see that the summation in (2.36) is multiplied by a factor ik For large k, the denominator

k ,and hence the computation of  for large k may contain large errors. On the other
hand, the computation of the expansion coe cients  is stable and for functions of the type
e'®™ equation (2.8) shows that the expansion coe cients k. Therefore the expansion
coe cients with respect to | for large k are small. In other words, from (2.8) we have small
expansion coe cients with respect to the numerically unstable basis functions.

In Figure 2.7 we expand the function e’ for a range of bandwidths using 64 approximate
prolate spheroidal wave functions as basis functions. We construct the 64 nodes using the
four bandwidths ¢ = 18:5 , 20:5 , 23 , and 26 . In order to obtain these bandwidths using
64 nodes, we set the accuracy to 10 3,10 °, 10 7, and 10 4, respectively.

34



{| Ifog10

Bandwi dth b

100
/A
7

-~

-

7

L —
P

LT
T\ALT




. . . . . . Degr ee

-7.5-

-10 -

-12.5-

-15-






Error,

| 0g10

Vari ance,

1 0g10



Chapter 3

Derivative matrices with boundary
and interface conditions

When solving ordinary and partial di erential equations using spectral methods, we expand
the solution into a set of basis functions which we can di erentiate exactly. The trigonomet-
ric functions or Chebyshev polynomials are two common choices of such basis functions. In
this thesis, we use the interpolating basis for bandlimited functions which also can be dif-
ferentiated exactly. We solve time-dependent PDEs by discretizing the spatial operator and
then compute the exponential of the resulting matrix. This approach requires the boundary
conditions to be incorporated into the spatial operator.

This thesis will also study numerical solutions to wave propagation problems over domains
with piecewise smooth coe cients. We decompose the domain into a collection of subdomains
such that v



De ne G as the linear span of £ ;(x)giL, equipped with the inner product
YA 1
(u;v) = u(x)v(x) dx:
1

De ne S; K; E; F, and G as the N-by-N matrices with elements given by

Sk = (1(x); «k(9);

d k(x)
dx

Ka= 1(X);

Ew= «( 1) 1( 1)

Fu= @) 1(Q);
and
G = (L) 1( 1)

We note that the matrices E; F, and G are of rank one. Furthermore,
Z T Z, q
K = '(X)d_x k(X)dx= (1) «(1) (1) «( 1) k(X)d—X 1(X) dx

1 1
=Fu Eu Kk
and hence
K=F E K: 3.1

We note that if F = E, then the matrix K is anti-symmetric.

3.1 Derivativ



for some set of coe cients s;. We seek coe cients s, such that

du X
x-S (3.2)
I=1
Computing the inner product with  of both sides of (3.2) yields
Z, du X Z, _
dx k(X) dx = Si 1(X) k(X) dx
10X =1 1
(3.3)
= Sus:

=1

Integrating the left hand side of (3.3) by parts, we have

21 h i, X
ix k(X) dx = u(x) k(x) . Kysi: (3.4)
1 I=1
Combining (3.3) and (3.4), we obtain
X X
Susi=u(l) «(1) u( 1) «( 1) Kysi: (3.5)
1=1 I=1
Our next step is to express u( 1) via the coe cientss;. Let lﬁ.consider the case where we
do not impose any boundary condition. Then using u( 1) = :\':1 s 1( 1), and inserting
it into (3.5) gives us
X X X X
Swsi= s (1) k() sia( 1) k(1) Kiisi
I=1 I=1 I=1 I=1
(3.6)
X X X
= Fusi Ewsi Kusi:
1=1 1=1 1=1
By introducing the notation s = [s1;S,;: