$\widetilde{\mathbf{D}}$ unidirectional Pinning and Hysteresis of Spatially Discordant \mathbf{A} and \mathbf{C} are defined \mathbf{u} a per Sebastian Skardal, 1, ¹, ¹, ², ¹, ¹, ¹
¹Department of Applied Mathematics, University of Colorado at Boulder, Boulder, Colorado 80309, USA

2

 $G(2L - x - x'),$ $G(x, x') = G(x - x') + G(x + x') + G(2L - x - x'),$
 \uparrow $G(x) = H_{\xi}(x)[1 + \frac{wx}{\xi^2}(1 - \frac{x^2}{\xi^2})],$ h is H_{ξ} is gaussian with standard deviation ξ (see \mathcal{R} . 7), $\zeta = \sqrt{2D_VAPD^*}$ $w =$
2Dv/cv^{*} $2D_V/cv^*$, and the APD and CV at the alternation (\mathbf{P}^* $cv^*,$ respectively), and D_V is the diffusion constant of V_m $V_m = D_V \partial_x^2 V_m^* - I_{\text{ion}}$ TnðxÞ AnðxÞ þ Dnðx^Þ to vary from beat to beat along the \ldots $7,14$

$$
T_n(x) = \tau + \int_0^x \frac{dx'}{cv[D_n(x')] - \int_0^x \frac{dx'}{cv[D_{n-1}(x')]},
$$
 (3)

 $h \rightarrow \tau, h \rightarrow \tau, \dots$ complete the model to specify the forms of f_{a} and f_c . Since we are interested in understanding the generic \mathbb{R} of the generic \mathbb{R} \mathbf{b}_{cyc} or \mathbf{c}_{cyc} simple phenomenological phenomenolo forms of those maps defined implicitly by

$$
\overline{f_c}/C^{\triangleright}
$$

$$
c'(x) = \frac{c^3(x) - (r-1)c(x) - \alpha \ a'(x)}{(r-1) - 3c^2(x)}.
$$
 (10)

h, h,
$$
c = \frac{1}{r}
$$
 $c \sim 0$ h $r > r_2($),
\n $c(x) = c_- = \pm \sqrt{(r-1)/3}$, h, $c = \sqrt{1-r}$ $(\sqrt{1-r})$

 T_1 is mediated by an absolute instability and r_1 is mediated in Ref. [\[7\]](#page-4-1) $f(x) = \begin{cases} 1 & x \neq 1 \end{cases}$ r_1

(a 2/3) r_1 r $(4^{2/3})$ and $1 - \eta + \xi^2(w)$ $^{-1}$ for $\mathbf{t} \rightarrow \mathbf{t}$ the traveling and stationary modes, respectively, \mathbf{h}_{max} $\eta = \alpha \gamma$, the wavelength at $\eta = \alpha \gamma$ $4\pi \xi^{2/3}$ 1/3/ $\sqrt{3}$ 2 $\pi (w - 1/2)$ the traveling and star $t_{\rm max}$ cases, respectively, respectively, respectively, which agrees with the voltagedriven case in \mathbb{R} , $\mathbb{7}$, since obtained be obtained by obtained by $f \beta \neq 0.$ Numerical simulations (not shown) are in good and shown in the shown in W is not concentrate on the discontinuous regime that is defined in the discontinuous regime that is defined in the primary focus of this Letter. To characterize calcium

alterna $\mathbf{F}_{\mathbf{r}}$ in this regime $\mathbf{F}_{\mathbf{r}}$ in this regime $\mathbf{F}_{\mathbf{r}}$ in this regime $\mathbf{F}_{\mathbf{r}}$ $\Gamma_{\rm eff}$ stationary steady-state period-two profiles and substi t_1 $c(x) = c_n(x) = -c_{n+1}(x)$ [\(8](#page-1-0)). After different $\begin{bmatrix} c(x) & c_1(x) \\ c_2(x) & c_3(x) \end{bmatrix}$ where $\frac{1}{\sqrt{2}}$ $\frac{1}{\$

Unidirectional pinning general pinning h as μ harder to the top inning general μ eliminate SDA by node motion once they are formed. We