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We study the transition from incoherence to coherence in large networks of coupled phase oscillators. We
present various approximations that describe the behavior of an appropriately defined order parameter past the
transition and generalize recent results for the critical coupling strength. We find that, under appropriate
conditions, the coupling strength at which the transition occurs is determined by the largest eigenvalue of the
adjacency matrix. We show how, with an additional assumption, a mean-field approximation recently proposed
is recovered from our results. We test our theory with numerical simulations and find that it describes the
transition when our assumptions are satisfied. We find that our theory describes the transition well in situations
in which the mean-field approximation fails. We study the finite-size effects caused by nodes with small degree
and find that they cause the critical coupling strength to increase.
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II. SELF-CONSISTENT ANALYSIS

As shown by Kuramotof6g, the dynamics of weakly
coupled, nearly identical limit cycle oscillators can, under
certain conditions, be approximated by an equation for the
phasesun of the form

u̇n = vn + o
m=1

N

Vnmsum − und, s2d

wherevn is the natural frequency of the oscillatorn, N is the
total number of oscillators, andVnm is a periodic function
depending on the original equations of motion. The all-to-all
Kuramoto model assumes thatVnmsum−und=sk/Ndsinsum

−und, where k represents an overall coupling strength. In
order to incorporate the presence of a heterogeneous net-
work, we assume thatVnmsum−und=kAnm sinsum−und, where
Anmø0 are the elements of anN3N adjacency matrixA de-
termining the connectivity of the network. Therefore, we
study the system

u̇n = vn + ko
m=1

N

Anm sinsum − und. s3d

For specificity, we will primarily consider the case where
the Anm are either 0snodesn andm are not connectedd or 1
snodesn and m are connected, and all connections have
equal strengthd. We assume that the network is undirected, so
that Anm=Amn. We assume also that, for eachn, the corre-
spondingvn is independently chosen from a known oscilla-
tion frequency probability distributiongsvd. We assume that
gsvd is symmetric about a single local maximumscf. Sec.
Vd, which without loss of generality we can take to be at
v=0. sIf the mean frequency isv0Þ0, we make the change
of coordinates that shifts eachvn by v0 and eachun by v0t.d
In this case, synchronization will occur at frequency 0; i.e.,
un will remain approximately constant for synchronized
nodes.

We define a positive real-valued local order parameterrn
by

rne
icn ; o

m=1

N

Anmkeiumlt, s4d

wherek¯lt denotes a time average. In terms ofrn, Eq. s3d
can be rewritten as

u̇n = vn − krn sinsun − cnd − khnstd,

sttd



the real part equations8d can be neglected because of the
symmetry ofgsvd about 0. We thus obtain the approximation

rn = o
uvmułkrm

Anm cosscm − cndÎ1 −S vm

krm
D2

. s10d

Since we are interested in the transition to coherence, we
look for the solution of Eq.s



rn = rn
s0d + drn, s19d

where



expansion is appropriate forg.5. For 3łgł5, he obtains
in the limit N→‘ that r scales near the transition asr
~ sk/kmf−1d1/sg−3d. A similar situation occurs in the perturba-
tion theory fEqs. s22d and s23dg, which was also based on
expandingg to second order. According to the previous dis-
cussion, we will only use the expression forr obtained from
the perturbation theory for situations in whichkd4l‘ is finite.



large N stoo large for us to simulated. In fact, asN→‘, l
diverges whilekd2l / kdl remains finite. Thus, the critical cou-
pling constant obtained from our theory approaches zero as
N→‘, while the one obtained from the mean-field theory
remains constant. This suggests that the few nodes with high
degree are able, for large enoughN, to synchronize the net-
work and that these nodes are not taken into account by the
mean-field theory.

For g,3, we observe from Fig. 2 thatl is less than
kd2l / kdl when N=5000. Thus, in this range, the mean-field
theory predicts a transition for a coupling constant that is
smaller than that predicted by the perturbative approach. In
the next section we will show, for a numerical example in
this regime, that the transition occurs for a larger coupling
than that predicted by the mean-field theory.

III. EXAMPLES

In order to test the results in Sec. II, we choose a distri-
bution for the natural frequencies given bygsvd=s3/4ds1
−v2d for −1,v,1 andgsvd=0 otherwise. In order to gen-
erate the network, we specify a degree distribution and we
use the “configuration” modelse.g., Sec. 4.2.1 of Ref.f1g
and references thereind to generate a random network real-
ization with the specified degree distribution:sid we first gen-
erate adegree sequenceby assigning a degreedn to each
noden according to the given distribution;sii d imagining that
each noden is givendn spokes sticking out of it, we choose
pairs of spoke ends at random and connect them.

We consider a fixed number of nodes,N=2000, and the
following networks with uniform coupling strengthsi.e.,
Anm=1 or 0d: sid the degrees are uniformly distributed be-
tween 50 and 149, andsii d the probability of having a degree
d is given bypsdd~d−g if 50łdł2000 andpsdd=0 other-
wise, whereg is taken to be 2, 2.5, 3, and 4.fOur choice
psdd=0 for d,50 ensures that there are no nodes of small
degree and suggests that our approximation of neglecting the
noiselike, fluctuating quantityhn in Eq. s5d is valid. We re-
turn to this issue in Sec. VI.g

The initial conditions for Eq.s3d are chosen randomly in
the intervalf0,2pg and Eq.s3d is integrated forward in time
until a stationary state is reachedsstationary state here means
stationary in a statistical sense; i.e., the solution might be

time dependent but its statistical properties remain con-
stant in timed. From the values ofunstd obtained for a
given k, the order parameterr is estimated as r
<uom=1

N dmkeiumlt /om=1
N dmu, where the time average is taken

after the system reaches the stationary state.sClose to the
transition, the time needed to reach the stationary state is
very long, so that it is difficult to estimate the real value ofr.
This problem also exists in the classical Kuramoto all-to-all
model.d The value ofk is then increased and the system is
allowed to relax to a stationary state, and the process is re-
peated for increasing values ofk.

In Fig. 3 we show the results for the network with a
uniform degree distribution as described abovefnetworksidg.
We plot r2 from numerical solution the full system in Eq.s3d
strianglesd, the theoretical prediction from the time-averaged
theory ssolid lined, and the prediction from the mean-field
theory slong-dashed lined and from the perturbation theory
sshort-dashed lined ssee Table Id as a function ofk/kc, where
kc is given by Eq.s16d. The frequency distribution approxi-
mation agrees with the time-averaged theory, so we do not
include it in the plot. In this case, all the theoretical predic-
tions provide good approximations to the observed numerical
results. The time-averaged theory reproduces remarkably
well the numerical observations. Even the irregular behavior
near the transition is taken into account by the time-averaged
theory. The mean-field theory is in this case a good approxi-
mation, providing a fair description of the order parameter
past the transition. The perturbation theory is valid in this
case up tok/kc<1.3.

The results for the networks with power-law degree dis-
tributions fnetworkssii dg are shown in Figs. 4sad, 4sbd, 4scd,
and 4sdd for g=2, 2.5, 3, and 4, respectively. The order pa-
rameterr2 from numerical solution of the full system in Eq.
s3d strianglesd, the time-averaged theoryssolid lined, the fre-
quency distribution approximationsstarsd, and the mean-field
theory slong-dashed lined



sharper transition than actually occurs. The mean-field ap-
proximation agrees closely with the frequency distribution
approximation forg=4 and, away from the transition, for
g=3. However, forg=2 andg=2.5, it deviates greatly from
the other approximations and from the numerical simulation.
The critical coupling strengths predicted by the mean-field
theory and by the perturbation theory are very close forg
=4, but the mean-field theory predicts a transition at about
10% smaller coupling forg=3, about 20% smaller forg
=2.5, and about 40% smaller forg=2. Since the transition in
the numerical simulation is not so well defined, both ap-
proximations are reasonable forg=3, but for g=2 and g
=2.5 the critical coupling strength predicted by the mean-
field approximation is clearly too small.

In the past years, it has been discovered that many real-
world networks have degree distributions which are power

laws with exponents between 2 and 3.5f1,2,15g. In order to
accurately predict the critical coupling strength across this
range of exponents, the critical coupling constant given by
kc=k0/l determined by the largest eigenvalue of the adja-
cency matrix should be used. The behavior of the order pa-
rameter can be estimated using the time-averaged theory or
the frequency distribution approximation. These two ap-
proximations were found to be consistently accurate for the
range of exponents and values of the coupling constant stud-
ied. For the value ofN used, the mean-field theory works
well in predicting the critical coupling strength and the be-
havior of the order parameter if one is interested in values of
g larger than 3.

Tables II and III present the results of comparing the the-
oretical predictions with the numerical integration of Eq.s3d
for different networks. Table II compares the observed criti-
cal coupling strength with the theoretical estimate. If both
are close, the entry is “G,” and otherwise “NG.” Table III
compares the predicted behavior of the order parameter past
the transition with the observed one. If the corresponding
entry in Table II is “NG,” no comparison is attempted. The
entries are the range ofk/kc over which the corresponding





condition, which we assume to be randomly drawn from
f0,2pd. sIn this section, byk¯l we mean an expected
value—i.e., an ensemble average, rather than an average over
t or n.d



valid in this case, we find that it correctly describes the trend
present in the numerical observations—i.e., a shifting of the
transition to coherence to larger values of the critical cou-
pling as nodes of small degree become important.

VII. DISCUSSION

A transition to coherence in large networks of coupled
oscillators should be expected at a critical value of the cou-
pling strength which is determined by the largest eigenvalue
of the adjacency matrix of the network and its associated
eigenvector. In the all-to-all case, the largest eigenvalue is
N−1<N and thus the Kuramoto resultkc=k0/N is recov-



o
uvmu.krm

N

Anmkeiumlt. sA1d

We will follow to some extent Chap. 12 of Ref.f4g. The time
average is given by

keiumlt =E
−p

p

eiupmsuddu, sA2d

wherepmsuddu is, given the connections of nodem and its
natural frequencyvm



bj =
k

2o
n=1

N
Ajnbn

s− ivn
+

k

2
e2 Imssdto

n=1

N
Ajnbn

*e2iun
0std

s* + ivn
. sC6d

The second sum is very small due to the incoherence of the
un

0’s. So, changing indices, we are left with the eigenvalue
equation

bn =
k

2 o
m=1

N
Anmbm

s− ivm
, sC7d

as claimed in Sec. V.

If, as proposed in Sec. VI, there are fluctuations in the
values ofun

0std such thatun
0std=vnt+fn+Wnstd, whereWnstd

is a random walk such thatkWnstdl=0 and kWnstd2l=2Dnt,
we take the expected value of Eq.sC5d. We use the fact that
for a Gaussian random variablex with variances2 we have
keixl=eikxl−s2/2. In this case,x=vmst8− td ands2=2Dmst− t8d.
We obtain, after performing the integration,

bn =
k

2 o
m=1

N
Amnbm

s+ Dm − ivm
. sC8d
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