Preliminary Exam Partial Di erential Equations 9:00 AM - 12:00 PM, Jan. 11, 2024 Newton Lab, ECCR 257

Student ID (do NOT write your name):

There are five problems. **Solve four of the five problems.** Each problem is worth 25 points.

A sheet of convenient formulae is provided.

1. **Method of characteristics.** Consider the inviscid Burger's equation

$$
U_t + U U_x = 0 \tag{1}
$$

on the domain $= R \times R^+$ with initial conditions

$$
u(x, 0) = u_0(x) = \begin{cases} 1, & x \neq 0, \\ 1 - x, & 0 < x \neq 1, \\ 0, & 1 < x. \end{cases} \tag{2}
$$

(a) Find the time and position at which a shock forms. **Solution:** The characteristic equations are

$$
\frac{dt}{d} = 1,\t\t(3)
$$

$$
\frac{dx}{d} = U,\tag{4}
$$

$$
\frac{\partial u}{\partial t} = 0,\tag{5}
$$

(6)

which gives, using the initial data $(x, t, u) = (s, 0, u_0(s))$,

$$
t = \t{1}
$$

$$
x = ut + s,\tag{8}
$$

$$
u = u_0(s). \tag{9}
$$

Thus, the solution *u* satisfies the implicit equation $u = u_0(x - ut)$. To find the location of the shock, we di erentiate with respect to x and solve for u_x , finding

$$
u_x = \frac{u_0}{1 + u_0 t}.
$$
 (10)

Thus, and a characteristic emanation of the initial point radio (u)]TJ/c290.061(w)27(orth)-32whe.9

we conclude that all characteristics emanating from (0, 1) produce a shock at $t_s = 1$. The position of the shock for the characteristic starting at $x_0 = s$ (-1, 1) can be found by setting $t = t_s = 1$ and $u = u_0(s) = 1 - s$ in Eq. (8), which gives $x_s = (1 - s)1 + s = 1$. Therefore the shock forms at $(x_s, t_s) = (1, 1)$.

(b) Find the subsequent trajectory of the discontinuous shock by applying the Rankine-Hugoniot condition

$$
s(t) = \frac{1}{2}(u_-(t) + u_+(t)),
$$

where *s* is the speed of the discontinuity and $u_{\pm}(t) = \lim_{x \to s(t)^{\pm}} u(x, t)$ and $s = x_s(t)$. **Solution:** Since the Burgers equation can be written as $u_t + (u^2/2)_x = 0$, the Rankine-Hugoniot condition for the position of the shock *xs*(*t*) gives

$$
\frac{dx_s}{dt} = \frac{\frac{1}{2}u_+^2 - \frac{1}{2}u_-^2}{u_+ - u_-},\tag{12}
$$

where *u*⁺ and *u*[−] are the values of *u* to the right and to the left of the shock, respectively. The value to the left corresponds to characteristics emanating from $x_0 < 0$, for which $u = 1$, and the value to the left corresponds to characteristics emanating from $x_0 > 1$, for which $u = 0$ (a rough sketch of the characteristics might be useful here). Thus, $u_{+} = 0$ and $u_-=1$, and we have

$$
\frac{dx_s}{dt} = \frac{\frac{1}{2}0 - \frac{1}{2}1}{0 - 1} = \frac{1}{2}.
$$
\n(13)

Together with the initial condition $x_s(1) = 1$, we get $x_s(t) = 1 + (t - 1)/2$.

- (c) Sketch the characteristics and the shock in the (*x, t*) plane. **Solution:** A sketch is shown below.
- (d) Find the solution *u*(*x, t*).

Solution: The solution satisfies the implicit equation $u = u_0(x_0) = u_0(x - ut)$. When x_0 < 0, u_0 = 1, and so we have $u = 1$ along the characteristics $x_0 = x - t$ for $x_0 < 0$, provided they haven't met the shock (blue lines in diagram). Similarly, $u_0 = 0$ for $x_0 > 0$, and so $u = 0$ along the characteristics $x_0 = x$ for $x_0 > 0$ (purple lines). Finally, if $0 < x_0 < 1$ we have $u_0 = 1 - x_0$, and so $u = 1 - (x - ut)$, which yields $u = (1 - x)/(1 - t)$ (green lines). Putting everything together, we obtain

3. Wave Equation. Consider the following initial-boundary value problem on the domain $D =$ $\{(x, t): t \in \mathbb{R}^+, x \in \mathbb{R}^+, x > t \neq 0\}$, where > 1:

$$
U_{tt} = U_{xx}, \qquad \qquad x > t' \quad, \quad t > 0, \tag{15}
$$

 $u(x, 0) = (x), \quad x > 0,$ (16)

- $u_t(x, 0) = (x), \quad x > 0,$ (17)
- $u(x, x) = f(x), x > 0,$ (18)

with , , $f = C^2(R_0^+)$.

(a) Find the solution *u*(*x, t*). **Solution:** We seek a solution of the form

$$
u(x, t) = F(x - t) + G(x + t)(16)
$$

(b) Find su cient conditions on , , and f so that the solution is continuous in D . **Solution:** We need to ensure continuity across $x = t$, where the two solutions meet. Letting x t^+ and using the fact that the functions involved are continuous we get

Multiplying the PDE by *v* and integrating over the domain, we have

$$
0 = \frac{1}{B(0,1)} V(\mathbf{x}) \quad V(\mathbf{x}) \, \mathrm{d}\mathbf{x}
$$

= $- \frac{1}{B(0,1)} \int V(\mathbf{x})^2 \, \mathrm{d}\mathbf{x} + \frac{1}{0} V(1, y) V_r(1, y) \, \mathrm{d}\mathbf{x}$
= $- \frac{1}{B(0,1)} \int V(\mathbf{x})^2 \, \mathrm{d}\mathbf{x}$

upon applying integration by parts and the boundary condition. Since the integrand is non-negative definite and the integral is zero, we must have

 $V(x) = const,$ **x** $B(0, 1)$ $V(x) = const,$ **x** $B(0, 1)$.

Since the average of $v(x)$ on the boundary is zero, $v(x)$ must be identically zero and uniqueness is proven.

(b) We seek a solution using the method of separation of variables in polar coordinates. Then, eq. (33) becomes

$$
u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u = 0, \quad r \quad (0,1), \quad (0,2),
$$

$$
u_r(1, \cdot) = g(\cdot), \quad [0,2].
$$

Seeking a solution in separated form $u(r,) = f(r)q()$ implies

$$
g\left(\begin{array}{cc}0 & + & g(1) = 0, \\ f\left(r\right) & + \frac{1}{r}f(r) - \frac{1}{r^2}f(r) = 0, \\ f\left(\begin{array}{c}0 & 1\end{array}\right), & \lim_{r \to 0} \frac{f(r)}{r} < 0. \end{array}\right),
$$

The angular boundary value problem has the trigonometric solutions

$$
g_n() = A_n \cos(n) + B_n \sin(n), \quad n = 0, 1, 2, \ldots
$$

with the corresponding eigenvalues $n = n^2$.

The radial problem exhibits the bounded solutions

$$
f_n(r)=r^n.
$$

Introduce the series solution

$$
u(r,) = A_0 + r^n [A_n \cos(n) + B_n \sin(n)].
$$

The coe cients are determined by the boundary conditions

$$
u_r(1,) = \underset{n=1}{n[A_n \cos(n) + B_n \sin(n)]} = g(), \qquad [0, 2].
$$

Multiplying by $cos(m)$ and integrating from 0 to 2, we obtain

$$
A_m = \frac{1}{m} \int_0^2 g() \cos(m) d , \quad m = 1, 2,
$$

Multiplying by sin(*m*) and integrating from 0 to 2, we obtain

$$
B_m = \frac{1}{m} \int_0^2 g() \sin(m) d , \quad m = 1, 2, ...
$$

which determines a series representation of the solution. To determine A_0 , we require zero average on the boundary so that $A_0 = 0$.

(c) Inserting the expressions for the coe cients into the series representation, we obtain

$$
u(r,) = \frac{r^{n} 1}{n^{n}} \int_{0}^{2} g(\cdot) \cos(n) \cos(n) + \sin(n) \sin(n) d\n= \frac{2}{n} g(\cdot) - \frac{r^{n}}{n+1} \cos(n(-)) d\n= \frac{2}{n} g(\cdot) N(r, -) d
$$

where *a* is a constant and the dot and prime indicate time and space derivatives, respectively. If $a = 0$, the spatial equation gives $X = A + Bx$, which upon evaluation of the boundary conditions leads to $X = 0$. Similarly, if $a > 0$ we get $X = Ae^{-\overline{a}x} + Be^{-\overline{a}x}$, leading also to $X = 0$. Therefore, a must be negative and we set $a = -2$. We obtain

$$
T(t) = T(0) \exp(-\alpha^2 t), \qquad (42)
$$

$$
X(x) = A\sin(\ x) + B\cos(\ x). \tag{43}
$$

Using the boundary conditions $X(0) = X(1) = 0$ we obtain $B = 0$ and $B = n$, so we get the modes

$$
X_n(x) = \sin(\alpha_n x), \tag{44}
$$

where $n = n$ and $n = N^+$. Thus, we find

$$
\tilde{u}(x, t; s) = A_n e^{-\frac{2}{n}t} \sin(\frac{2}{n}x). \tag{45}
$$

Using the initial conditions $\tilde{u}(x, t; s) = f(x)e^{-s}$ we get

$$
f(x)e^{-s} = A_ne^{-\frac{2}{n}s}\sin(\frac{n}{x}),
$$
 (46)

which implies that $A_n = f_n e^{(\frac{2}{n}-1)s}$, where f_n is the *n*th sine Fourier coe cient of $f(x)$. Therefore,

$$
\tilde{u}(x, t; s) = f_n e^{(\frac{2}{n}-1)s} e^{-\frac{2}{n}t} \sin(\frac{2}{n}x).
$$
 (47)

and

$$
u(x, t) = \int_{0}^{t} \tilde{u}(x, t; s) ds = \int_{0}^{t} f_n e^{(\frac{2}{h} - 1)s} e^{-\frac{2}{h}t} \sin(\frac{2}{h}x) ds \tag{48}
$$

$$
= \int_{n=1}^{1} f_n e^{-\frac{2}{n}t} \sin(\frac{2}{n}x) \int_0^t e^{(\frac{2}{n}-1)s} ds \tag{49}
$$

$$
= \int_{n=1}^{1} f_n e^{-\frac{2}{n}t} \sin(\frac{2}{n}x) \frac{e^{(\frac{2}{n}-1)s}}{\frac{2}{n}-1} \frac{t}{0}
$$
 (50)

$$
= \int_{n=1}^{1} f_n e^{-\frac{2}{n}t} \sin(\frac{2}{n}x) \frac{e^{(\frac{2}{n}-1)t} - 1}{\frac{2}{n}-1}
$$
 (51)

$$
= f_n \sin(\frac{\pi x}{n}) \frac{e^{-t} - e^{-\frac{2}{n}t}}{\frac{2}{n} - 1}.
$$
 (52)

(b) Prove that the solution is unique.

Solution: Assume there are two solutions, u_1 and u_2 . Then their di erence $w = u_1 - u_2$ satisfies

$$
W_t = W_{XX}, \t\t 0 < X < 1, \t > 0,
$$
\t(53)

- $w(x, 0) = 0,$ $0 < x < 1,$ (54)
- $w(0, t) = u(1, t) = 0$ $t > 0$. (55)

Let $T > 0$. By the maximum principle, the maximum of *w* in the closure of $U_T =$ $[0, 1] \times [0, 7)$ must be equal to the maximum of *w* in its parabolic boundary, $\bar{U}_T - U_T$, which is zero. Therefore $w = 0$, or equivalently $u_1 = u_2$ in \overline{U}_7 . Applying the same argument to $-w$ we conclude that $w = u_1 - u_2$ 0 in \bar{U}_T . Since \bar{T} was arbitrary, $u_1(x, t) = u_2(x, t)$ for all $t > 0$, $x \neq (0, 1)$, so the solution is unique.

