Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression

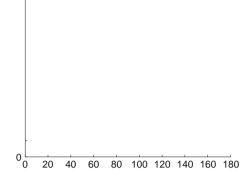
Zachary P. Kilpatrick · Paul C. Bressloff

Action Editor: Bard Ermentrout

1 Introduction

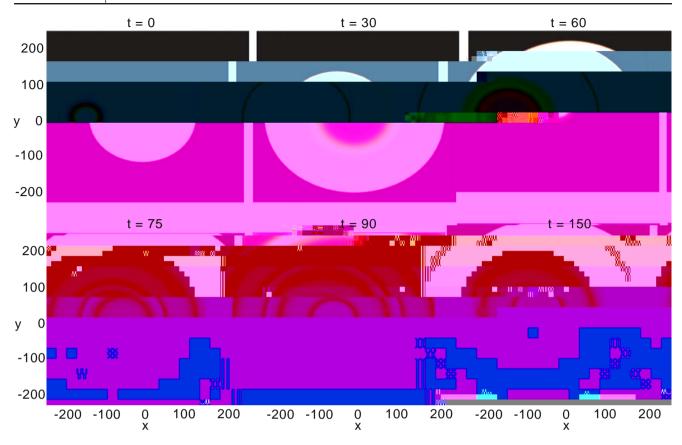
1 r t \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{t} \mathbf{t} t, **r**, f, **n**, t, ..., r $r t \neq (1).$tr

(,) T /C₄ , = 001 = 1.1 0 T 0 T (1) T /C₄ = 0.0



 $\begin{array}{c} \cdot \mathbf{r} \neq \neq \mathbf{t}, \quad \mathbf{t} \neq \mathbf{r}, \quad \mathbf{t} \neq \mathbf{r}, \quad \mathbf{r}, \quad \mathbf{r} \neq \mathbf{r}, \quad \mathbf{r},$

-A



 $\langle \mathbf{r}_{i} | \mathbf{t} \rangle = \langle \mathbf{r}_{i} | \mathbf{t} \rangle \langle \mathbf{r}_{i} \rangle$ $\begin{array}{c} \mathbf{r} \\ \mathbf{$ (1 00). Tr S #t r r \mathbf{r}_{i} , \mathbf{t}_{i} , , \mathbf{t} tt r . t, #. , r. # ... tt r $\mathbf{t}_{j_1j_2}$ ' \mathbf{r}_i \mathbf{t}_i \mathbf{t}_j \mathbf{r}_j \mathbf{r}_j \mathbf{r}_j \mathbf{r}_j \mathbf{r}_j it is a ≠t t, ÷. t, r- \mathbf{r} \mathbf{t} \mathbf{t} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{t} \mathbf{r} \mathbf{t} \mathbf{r} \mathbf{t} \mathbf{r} \mathbf{r} \mathbf{t} t. $\mathbf{\dot{f}}_{1}$ \cdot t \neq \neq $r \neq r$ \cdot \neq t t t \neq \cdot \cdot \cdot t t r , t $\mathbf{t} = \mathbf{r} + \mathbf{r} +$ t, r, ž t, , ž, t, ž, tr, .

$$\frac{C_{i}}{t_{i}} = t_{i} N r_{i} \frac{d}{d_{i}} (010) = 1 = 0$$

$$\frac{d_{i}}{d_{i}} = t_{i} N r_{i} \frac{d}{d_{i}} = t r r_{i} r_{i}$$

 $\mathbf{r}_{i} \mathbf{i} = \dots \mathbf{k}_{ij} \cdot \mathbf{N}_{x} + \mathbf{j} = \dots \mathbf{k}_{ij} \cdot \mathbf{k}_{x} + \mathbf{j} + \dots \mathbf{k}_{ij} \cdot \mathbf{k}_{x} + \mathbf{$

$$J_{1} = \frac{-1}{1} I_{1}$$
 (1.)

$$\int_{I} = -u + q. \tag{(.)}$$

$$q_{l} = q_{l} - q_{l} - q_{l} \qquad (.)$$

$$J, u. q. a = - (..)$$

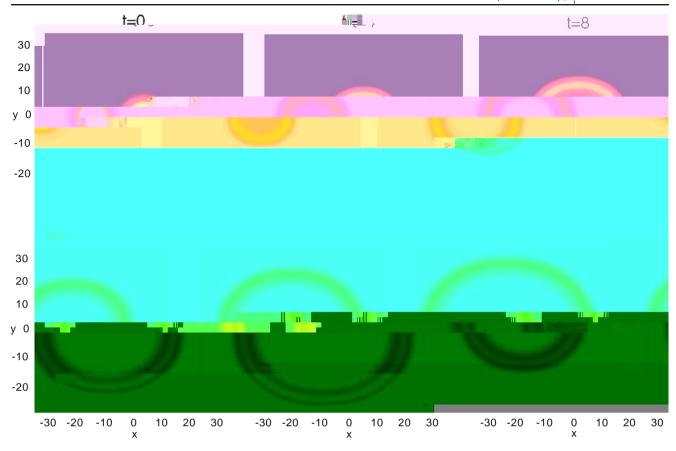


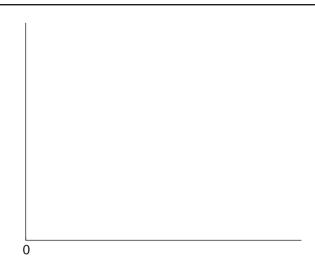
Fig. 13 S \neq t_{i} t_{i}

$$a \qquad \underbrace{\neg \downarrow + s}_{I} J, a \qquad J, a \qquad = \frac{a}{s} I, sa \qquad K, sa .$$

 $\mathbf{r} \quad \mathbf{I} \quad \mathbf{f} \quad$

$$\mathbf{b} + \mathbf{j} = \mathbf{a} \cdot \mathbf{a} \cdot$$

$$= - aI \cdot a K \cdot a - \frac{a}{I} \cdot a K \cdot a , \quad (.1)$$



References