#	possible	score
1	25	
2	25	
3	25	
4	25	
5	25	
Total	100	

Preliminary Exam Partial Di erential Equations 1:30 - 4:30 PM, Fri. Jan. 10, 2019 Room: Newton Lab (ECCR 257)

Student ID:

There are five problems. Solve four of the five problems. Each problem is worth 25 points.

A sheet of convenient formulae is provided.

1. Quasilinear first order equations.

Consider the Cauchy problem

$$U_t + (U + U^2)U_x = 0, \qquad X \quad \mathbb{R}, \quad t > 0, U(x, 0) = f(x), \qquad X \quad \mathbb{R}.$$
(1)

- (a) Suppose $f = C^1(\mathbb{R})$ and f, f are bounded functions. Prove that a continuously di erentiable solution u(x, t) to Eq. (1) exists and is unique for $x = \mathbb{R}$, t = [0, t] for some t > 0.
- (b) Provide an additional, necessary condition on f for the solution to Eq. (1) to exist for all t > 0, i.e., for u(x, t) to remain continuously di erentiable for all t > 0.

2. Heat Equation.

Let $D = (0, L) \times (0, T]$ and assume that $u = C(\overline{D}) = C^2(D)$ is a solution to

$$\begin{aligned} u_t(x, t) &= g(x)u_{xx}(x, t) + F(x, t), & 0 < x < L, & 0 < t \quad T. \end{aligned} (2) \\ u(x, 0) &= f(x), & 0 < x < L, \\ u(0, t) &= r(t), & 0 < t \quad T, \\ u(L, t) &= s(t), & 0 < t \quad T, \end{aligned}$$

where g(x) > 0 for all x (0, L).

(a) Let $B = \overline{D} \setminus D$. If F = 0, prove that

3. Wave Equation. Consider the initial boundary value problem (IBVP):

$$U_{tt} = c^{2}U_{xx} \qquad x > 0, \ t > 0,$$

$$U(x, 0) = 0 \qquad x > 0,$$

$$U_{t}(x, 0) = (x) \qquad x > 0,$$

$$U_{x}(0, t) = 0 \qquad t;>$$