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WAVELET-LIKE BASES FOR THE FAST SOLUTION OF
SECOND-KIND INTEGRAL EQUATIONS*

B. ALPERT, G. BEYLKIN$, R. COIFMAN, AND V. ROKHLIN

Abstract. A class of vector-space bases is introduced for the sparse representation of discretiza-
tions of integral operators. An operator with a smooth, nonoscillatory kernel possessing a finite
number of singularities in each row or column is represented in these bases as a sparse matrix, to
high precision. A method is presented that employs these bases for the numerical solution of second-
kind integral equations in time bounded by O(n log2 n), where n is the number of points in the
discretization. Numerical results are given which demonstrate the effectiveness of the approach, and
several generalizations and applications of the method are discussed.
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Introduction. Integral equations are a well-known mathematical tool for for-
mulating physical problems. As a numerical tool they have several strengths (good
conditioning, dimensionality reduction, and the ability to treat arbitrary regions),
but have one overriding drawback: the high cost of working with the associated dense
matrices. For a problem requiring an n-point discretization, the inverse of a dense
n n matrix must be applied to a vector. Even to apply the matrix itself to a vector
requires order
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been studied by many authors, resulting in constructions
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FIG. 1. The matrix represents a
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more moments to vanish. Namely, out of the k vectors nonzero on x1,..., X2k, we
require that one have k vanishing moments, a second have k / 1, a third have k / 2,
and so forth, and the kth have 2k-1 vanishing moments. We place the same condition
on the k basis vectors nonzero on x2k+l,... ,X4k, and so on, for each block of k basis
vectors among the n- k basis vectors with zero moments.

We construct the basis by construction of a finite sequence of bases (shown
in Fig. 2), each obtained by a number of orthogonalizations. The first basis re-
sults from n/(2k) Gram-Schmidt orthogonalizations of 2k vectors each. In particu-
lar, the vectors (xlJ,... ,x2kJl for j 0,..., 2k- 1 are orthogonalized, the vectors
Ix2k+Y,... ,Xak) for j 0,... ,2k- 1 are orthogonalized, and so forth, up to the
vectors (x,_2k+:,..., XnJl for j 0,..., 2k 1, which are orthogonalized.

FIG. 2. Each of the four matrices represents one basis, as in Fig. 1. The upper-left matrix is

formed by orthogonalizing moment vectors on blocks of 2k points. The upper-right matrix is obtained

from the upper-left matrix by premultiplying by an orthogonal matrix which is the identity on the
upper half. Similarly, the lower matrices are obtained by further orthogonal transformations. The
lower-right matrix represents the wavelet-like basis for n 64, k 4.

Half of the n vectors of the first basis have at least k zero moments; in forming
the second basis, these vectors are retained; the remaining n/2 basis vectors are trans-
formed by an orthogonal transformation into basis vectors, each of which is nonzero
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on 4k of the points Xl,..., xn, and half of which have at least k vanishing moments.
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where Im is the m m identity matrix and the n/2 n/2 matrix U is given by the
formula

V2,1U

L

U2,2U

V2,n L

V2,n u

where n2 n/(4k), U2,iT Orth (M2,i), and the 2k x 2k matrix M2, is given by

( U1,2-IUM1,2-I )M, U,M,
for 1,... ,n/(4k). In general, the jth basis matrix, for j 2,... ,log2(n/k), is
Uj... U1, with Uj defined by the formula

where U is given by the formula

Uj’I L

Uj,1U

L

U

L

\ Uj,nj u

where nj n/(2Jk); Uy, is given by

(2) Uy,,T Orth(Mj,);

and My, is given by

(3) Mj,i ( Uj-l’2i-lUMj-l’2i-1 )gj-l,2iUMj-l,2i

for 1,...,n/(2Jk). The final basis matrix U U...U1, where log2(n/k),
represents the wavelet-like basis of parameter k on x1,..., Xn. Note that the matrices
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U and Uj are of dimension n x n, U is it/2j-1 x n/2j-1 Vj,i and Mj,i are 2k x 2k,
and U.L. and U.v.

3,, 3,,
are k x 2k.

Remark 1.1. The definitions given for the basis matrices are mathematical defini-
tions only; in a numerical procedure, considerable roundoff error would be introduced
by the orthogonalizations defined above. In the actual implementation, the matri-
ces Mj,i are shifted and scaled, resulting in a numerically stable procedure that is
equivalent to the above definitions (in exact arithmetic). Details of this procedure are
provided in 3.

It is
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2. Second-kind integral equations.

2.1.
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integral operator ]C. It is not necessary that I1- RII be small, rather merely that R
approximate K; well near the solution f. Quadrature rules that have this property, but
that are defined only on the points x1,..., xn, are developed in [3]. In these rules the
quadrature weights wj of (6) become wij, which depend on the point of definition xi,

for i 1,..., n. The quadrature rules converge rapidly for kernels with singularities
of known location and type. These rules

are
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Furthermore, Xm A-1 as m --. oc and for any e > 0 we have

(14) III- X.AII < provided m > 2log2 (A) + log2 log(l/e),

where a(A) IIAII" IIA-II is the condition number of A and the norm is given by
IIAII- (largest eigenvalue of AHA)/2.

Proof. Equation (13) is obtained directly from the definition of X,+I. Bound
(14) is equally straightforward. Noting that AHA is symmetric positive-definite and
letting A0 denote the smallest, and A1 the largest, eigenvalue of AHA we have

(15)
III- XoAII

From (13) we obtain I XmA (I- XoA)2m which in combination with (15) and
simple manipulation yields bound (14). v1

The Schulz method is a notably simple scheme for matrix inversion and its conver-
gence is extremely rapid. It is rarely used, however, because it involves matrix-matrix
multiplications on each iteration; for most problem formulations, this process requires
order O(n3) operations for an n n matrix. We observe, however, that a sparse ma-

trix, possessing a sparse inverse, whose iterates Xn are also sparse, may be rapidly
inverted using the Schulz method. We have seen above that a discretized integral
operator I- T, similarity-transformed to the representation
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of basis matrices U1,..., U is to replace the definition (1) of the moments matrices

Ml,i for i 1,..., n/(2k), by the new definition

Ps+l 0 0 1 Xs-t-1 Xs+l
2k-1

0 Psi+2 0 1 Xs-t-2 Xs-t-22k-1

0 0 Ps+2k 1 Xs4_2k Xs+2k
2k-1

where si--(i- 1)2k and pj -p(xj)/2.
Now the integral equation (16) can be transformed to the equation

(I- D/21CD/2)(D-I/2f) (D-/2g),

which is discretized to a system that is sparse in the revised wavelet-like coordinates.
The inverse matrix is also sparse.

3. Numerical algorithms. In 1 we defined a class of bases for functions de-
fined on {x,...,xn}, and in 2 we showed that, to finite precision, second-kind
integral operators and their inverses are asymptotically sparse in these bases. In this
section we present procedures for computation of the bases, discretized integral oper-
ators in these bases, and the inverses of these operators. In 4 we give some numerical
examples based on our implementations of these procedures.

The computation of the new bases is discussed next, followed by a discussion of
the transformation of the integral operators to the new bases. We defer discussion
of the computation of the inverses, sketched above, to 3.3, which contains detailed
descriptions of all of the algorithms. Finally, 3.4 gives the complexity analysis for
the algorithms.

3.1. Computation of wavelet-like bases.
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where uj, (Xl+(-l)k2J + xk2J)/2,a:i, (xik2# -xl+(i-1)k2J)/2, and the matrix
Mj,i is defined by (1) and (3) in 1. The matrix Ui, is given by the formula

(21) U,,T Orth(M,),
which is equivalent to the definition given by (2). This equivalence immediately follows
from the fact that S(#, a) is upper-triangular and nonsingular.

The matrices M for i 1, n/(2k) are actually computed by the formula1,i

UI, UI,

(
(22) M, Ul,i Ul,i

1 ,+2-1,, (x2..71,)2k-1
wh , (-)e. Likewise, th tris M,, or e,..., ,d 1,..., ,/(ek)
are computed by the formula

(23) M,i
Uj_,2i_ M_l,2i_

U 2v_,, M_,,

where S,i and Si are defined by the formulae

(a) ,, s(u_,,_l,_,:,_)-s(u,,,,,),
(5) s,, s(_1,,, _,)-(,,, ,,).

Application of the inverse and product rules given in (18) and (19) to (24) and (25)
yields formul by which S), and Sj.i can be computed:

(26) S),i S((j,i- j-t,2i-t)/a-t,2i-, aj,i/aj-t,2i-),

(2) s, s((,,,- -1,,)/-1,,, ,,/-,,).

The matrices M, given by (22) and (23) are eily seen to be mathematically
equivalent to those defined by (20); nonetheless, computation of M, using (22) and
(23) avoids the large roundoff errors that would otherwise result.

3.2. ansformation to wavelet-like bases. We sume that for equispaced
points x,...,xn (defined in (11)) and some k, the orthogonal matrices U,...,U
defined in 1 have been computed (1 log2(n/k)). We now present a procedure for
computation of UTUT, where U U... U and T is the discretized integral operator
defined in (12).

3.2.1. Simple example. We begin with a simplified example in which T is
replaced by an n n matrix V of rank k whose elements j are defined by he
equation

k k

r:l s:l
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Each row and each column of V contains elements that are the values of a polynomial
of degree k- 1. The matrix V can be written as V pTAp, where the elements
of the k n matrix P are defined by Pij xj

i-1 and A is the k k matrix with
elements Aij. Recalling that the last k rows of the basis matrix U consist of an
orthogonalization of the moment vectors (xlJ,... ,xn) for j 0,..., k- 1, we can
rewrite V as V (P’)TA’p’. Here the k n matrix P’ consists of the last k rows of
U and A’ is a new k k matrix with elements Aj.

By the orthogonality of U, it is clear that the nxn matrix UVUT U(p’)TA’P’UT
consists entirely of zero elements except the k x k submatrix in the lower-right corner,
which is the matrix A’. Given a function to compute elements of the n n matrix V,
the matrix A’ can be computed in time independent of n by using a k k extract of
values from V. We form the k k matrix V’ with elements V defined by the formula

Then V’ (P")TA’p", where P" is the k x k extract of P’ with elements given by

Pi’ P,j,/k" Thus we obtain

(29) A’-((P")T)-IV’(P")-I
from P" and V’ readily in O(k3) operations, and we have obtained UVUT.

3.2.2. General case. The integral operator matrix T is, of course, not of low
rank, but it can be divided into submatrices, each approximately of rank k (see Fig.
4). The submatrices near the main diagonal are of size k k, those next removed
are 2k 2k, and so forth up to the largest submatrices, of size n/4 n/4. The total
number of submatrices is proportional to n/k. Given an error tolerance e
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FIG. 4. The matrix represents a discretized integral operator
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Step 1

Compute the shifted and scaled moments matrices M, for i 1,..., n/(2k) according
to (22).

Step 2

Compute Ul,i from M,i by (21) using Gram-Schmidt orthogonalization for i
1,...,

Step 3

Comment [Compute M, and Uj,i for j 2,..., and i= 1,..., n/(2Jk).
do j 2,...,1

do 1,...,n/(2Jk)
v andUj_ vCompute U_1,2_ Mj_,2i_ ,2 Mj_I,2.

Compute Sj, by (26) and S2, by (27);
multiply to obtain M, by (23).

Orthogonalize M,i to obtain Uj, by (21).
enddo

enddo

PROCEDURE TO COMPUTE UTUT
Comment [Input to this procedure consists of n, k, the matrices Uj, computed
above, a function to compute elements of T, and the chosen precision e. Output is a
matrix R such that IIR- UTUTII < ellTII.

Step 4

Compute the k k extracts, indicated by (28), of the submatrices of T shown in
Fig. 4.

Step 5

Extract the matrices P" (29) from U, U2U1,..., Ut-2... U and compute W0, WI-2
according to (30).

Step 6

Compute R0,..., Rt by (31), discarding elements below a threshold T determined by
the precision e (32).

PROCEDURE TO COMPUTE UT-1UT
Comment [Input to this procedure consists of n, the matrix Rt which approximates
UTUT, and the precision e. Output is a matrix Xm which approximates UT-UT.

StepU5oTm01

T17e

Rt
by3

31,
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3.4. Complexity analysis. In Table 1, we provide the operation count for each
step of the
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a standard procedure requiring order O(n2) operations; transform to wavelet-like co-
ordinates, obtaining U(I- T)v; apply the computed value of U(I- T)-IUT to the
vector U(I- T)v; transform to original coordinates by application of uT; compare
the result v’ to v. The measure of error is the relative L2 error, defined by the formula

The programs to transform and invert, as well as those to determine
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2. The operator matrix in wavelet-like coordinates is computed in time that grows
nearly linearly in n.

3. The inverse matrix is computed in time which grows sublinearly in n. This
is due to the fact that the cost of multiplying the sparse matrices is roughly order
O(nN2), for size n and bandwidth N. One result is that the cost sometimes drops as
n increases.

4. The accuracy is within the precision specified. In fact, due to the conservative
element thresholding (32), the actual error is considerably less than e.

5. The cost increases with increasing precision e, due to the increasing
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FIG. 5. The matrices constructed in the transformation of I- T, matrices R0,..., R3 defined
in (31), are shown for kernel g(x,
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TABLE 3
The operator I- ]C defined by the formula ((I- ]C)f)(x) f(x)- f log lx- f(t)dt is

discretized, transformed to the wavelet-like coordinates with k 8, and inverted. (See Table 2 and
text.)

Transform. Inversion L2

N1 tl N2 t2 Error

10-2

10-3

64 5.8 4 6.2 1 0.191E-02
128 5.0 10 5.5 2 0.368E-02
256 3.3 22 3.6 3 0.184E-02
512 2.7 46 2.9 4 0.113E-02
1024 1.8 92 1.8 4 0.177E-02
2048 1.4 182 1.4 5 0.170E-02
4096 1.2 363 1.2 8 0.928E-03
8192 1.1 729 1.1 11 0.166E-02

64 13.4 5 14.5 8 0.373E-03
128 14.2 13 15.5 21 0.332E-03
256 13.5 28 14.5 46 0.259E-03
512 12.7 57 13.6 90 0.225E-03
1024 10.2 114 11.1 134 0.198E-03
2048 7.7 221 8.3 176 0.179E-03
4096 4.9 429 5.2 185 0.174E-03
8192 3.5 818 3.7 208 0.173E-03

64 21.8 6 23.0 23 0.280E-04
128 26.3 15 28.0 81 0.253E-04
256 28.7 35 31.0 235 0.246E-04
512 28.4 75 30.9 538 0.184E-04
1024 25.5 149 27.2 969 0.925E-05
2048 22.0 297 23.8 1739 0.899E-05
4096 17.7 561 19.1 2610 0.798E-05

Initially we choose coefficient p(x) 1. The results are given in Table 6. Here
the error shown is the error of the computed solution relative to the true solution of
the integral equation. Many of the observations of the preceding examples can be
repeated here; additionally, we make the following comments.

1. The bandwidths are greater than for the uncorrected quadratures, but this
effect generally decreases with increasing size.

2. The integral equations are solved to within the specified precision in every case
but one. The exception, for e 10-4 and n 64, is likely due to the small number
of quadrature points and high specified precision.

3. An integral equation requiring an 8192-point discretization is solved to three-
digit accuracy in less than 20 minutes on the Sparcstation.

For our second set of integral equations, we let the coefficient p be theeq
ua
c
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TABLE 4
operator I-1 defined by the formula ((I-)f)(x) f(x)- f: K(x, t) f(t) dr, for nonsym-The

metric, nonconvolutional kernels K(x, t) shown below, is discretized, transformed to the wavelet-like
coordinates with k 4 and e 10-3, and inverted. (See Table 2 and text.)

Transform. Inversion L2

K(x, t) n N1 tl N2 t2 Error

cos(xt2) log Ix tl

cos(xt2)lx t1-1/2

cos(xt2)lx t11/2

sin(lOOx)) x(1+7
log Ix

64 18.2 2 20.2 15 0.318E-03
128 18.6 5 20.4 37 0.302E-03
256 17.9 11 19.8 82 0.301E-03
512 14.9 22 16.3 131 0.284E-03
1024 12.9 42 14.7 242 0.315E-03
2048 8.5 76 9.5 283 0.241E-03
4096 5.5 137 6.1 291 0.231E-03
8192 3.6 252 4.3 310 0.230E-03

64 27.2 3 28.9 32 0.256E-03
128 31.6 7 34.1 122 0.357E-03
256 35.6 16 40.6 454 0.434E-03
512 37.3 35 46.3 1509 0.643E-03
1024 34.5 72 45.4 4166 0.821E-03

64 6.8 2 7.3 2 0.303E-03
128 4.4 4 4.7 2 0.204E-03
256 2.9 8 3.0 3 0.209E-03
512 2.1 15 2.3 3 0.165E-03
1024 1.5 30 1.5 3 0.208E-03
2048 1.4 60 1.4 6 0.909E-03
4096 1.1 119 1.2 7 0.614E-03
8192 1.1 242 1.1 12 0.666E-03

64 30.5 3 33.8 44 0.344E-03
128 31.8 6 35.1 103 0.363E-03
256 21.2 12 24.1 119 0.348E-03
512 18.6 23 20.7 225 0.372E-03
1024 15.8 454550 0.8n1 
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TABLE 5
operator I--: defined by the formula ((I-:)f)(x) $(x)-f K(x,t) f(t) dr, for nonsym-The

metric, nonconvolutional kernels K(x,t) shown below, is discretized with the corrected trapezoidal
rules, transformed to the wavelet-like coordinates with k 4 and e 10-3, and inverted. (Compare
to Table 4.)

Transform. Inversion L2

K(x, t) n N1 tl N2 t2 Error

cos(zt2) log Ix

cos(xt2)lx t1-1/9.

cos(xt2)lx tll/Z

64 28.3 4 31.6 38 0.164E-03
128 31.5 9 34.3 103 0.162E-03
256 30.8 21 33.9 221 0.172E-03
512 27.0 41 29.7 370 0.177E-03
1024 21.0 80 23.7 454 0.357E-03
2048 14.8 143 17.2 566 0.317E-03
4096 9.5 250 10.4 555 0.282E-03
8192 5.8 448 6.9 665 0.271E-03

64 32.4 4 39.8 87 0.133E-02
128 38.3 10 45.7 251 0.412E-03
256 42.7 23 49.3 638 0.464E-03
512 45.1 51 51.3 1494 0.562E-03
1024 46.2 110 52.1 3309 0.635E-03

64 10.4 3 18.4 9 0.867E-03
128 7.6 6 13.8 13 0.526E-03
256 5.1 13 9.3 16 0.358E-03
512 3.3 25 5.2 15 0.292E-03
1024 2.3 48 3.1 15 0.201E-03
2048 1.9 96 2.3 20 0.393E-03
4096 1.5 188 1.7 25 0.405E-03
8192 1.3 374 1.4 36 0.404E-03

singularities or near-singularities off the main diagonal. The scheme described in

3.2 for transformation of a matrix to wavelet-like bases can be readily revised to an
adaptive scheme, which works as follows: an m x m submatrix A is transformed to
wavelet-like coordinates under
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TABLE 6
The integral equations f(x)
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TABLE 7
integral equations f(x) p(x) f: log Ix f(t) dt gin(x), for which an explicitThe solution

is known, are solved by the methods of this chapter (compare to Table 2 and see text). For e
10-2, 10-3, 10-4 we set k 4, 4, 8, respectively.

Transform. Inversion L2

e n, m N1 N2 t2 Error

10-2

10-3

10-4

64 19.7 4 23.9 18 0.360E-02
128 17.7 8 21.0 36 0.182E-02
256 12.6 15 14.6 47 0.174E-02
512 8.4 29 9.8 57 0.112E-02
1024 4.7 55 5.7 56 0.104E-02
2048 2.4 103 2.7 45 0.902E-03
4096 1.6 198 1.7 38 0.720E-03
8192 1.3 392 1.3 35 0.543E-03

64 36.2 4 41.3 63 0.228E-02
128 40.8 10 47.0 186 0.209E-03
256 40.5 23 47.3 427 0.177E-03
512 34.7 46 40.9 712 0.125E-03
1024 26.6 87 32.5 1042 0.134E-03
2048 18.7 158 22.5 1065 0.597E-03
4096 12.2 281 14.2 1127 0.529E-03
8192 7.2 502 8.4 1104 0.461E-03

64 47.6 9 58.2 123 0.230E-02
128 60.7 25 77.3 479 0.180E-03
256 64.1 59 81.2 1204 0.124E-03
512 62.5 128 76.3 2492 0.125E-04
1024 58.8 267 69.3 4672 0.862E-05

In this paper we strayed from the original mathematical definition of wavelets to
construct classes of bases tailored for numerical computation. The basis vectors’ prin-
cipal properties of local support and vanishing moments lead to sparse representations
of functions and operators that are smooth except at a small
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